

SUPRA SERVER PDM

Programming Guide
(UNIX & VMS)

P25-0240-49

SUPRA® Server PDM Programming Guide (UNIX & VMS)

Publication Number P25-0240-49

 1990–1992, 1994–2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM Programming Guide (UNIX & VMS),
P25-0240-49, is dated January 15, 2002. This document supports
Release 2.4 of SUPRA Server under OpenVMS/Alpha and VMS/VAX
(with HDMP support) and Release 1.3 under UNIX with PDM support.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book xi
Using this document... xi

Document organization .. xii
Conventions .. xiii

SUPRA Server documentation series .. xvi

Understanding SUPRA Server from a programming viewpoint 19
Overview ...19
The Relational Data Manager (RDM) (VMS) ..22
The Directory...23
The Physical Data Manager (PDM)...23
MANTIS...24
SPECTRA (VMS/VAX)..24

Understanding the Relational Data Manager and Relational Data
Manipulation Language (VMS) 25

Understanding views ...27
Understanding how your DBA creates and maintains views.......................................29

Defining views ..29
Changing view design ..29
Changing database structure ...29

Understanding Relational Data Manipulation Language ...30
Signing on/off ...30
Manipulating data ...30
Controlling data recovery ...33
Using special function RDML statements ..33

Testing views using the DBAID Utility subset..34

 Programming Guide v

Using the DBAID Utility subset to test views (VMS) 35
Accessing DBAID ... 36

Signing on to DBAID.. 40
Accessing the SUPRA Server HELP facility .. 41

* command ... 42
= command... 42
BYE command.. 43
BY-LEVEL command.. 43
CAUTIOUS command .. 45
COLUMN-DEFN command .. 46
COLUMN-TEXT command... 51
COMMIT command .. 52
DELETE command... 53
ERASE command... 56
FIELD-DEFN command.. 56
FIELD-TEXT command .. 59
FORGET command.. 61
GET command ... 62
GO command ... 68
INSERT command.. 72
KEEP command ... 77
LINESIZE command... 78
MARK command .. 79
MARKS command .. 80
OPEN command... 81
PAGESIZE command... 83
PRINT-STATS command ... 84
RELEASE command .. 85
RESET command... 86
SHOW-NAVIGATION command.. 87
SIGN-OFF command.. 88
SIGN-ON command ... 89
STATS command ... 90
STATS-OFF command... 91
STATS-ON command... 92
SURE command... 93
UNDEFINE command .. 94
UPDATE command .. 95
USER-LIST command .. 98
VIEW-DEFN command .. 99
VIEWS command ... 101
VIEWS-FOR-USER command ... 102

Contents

vi P25-0240-49

Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS) 103
Understanding RDML statement format ...103
Enrolling your program in the SUPRA directory ..108

Writing the identification division (COBOL)..108
Writing the program naming statement (FORTRAN and BASIC)................108

Defining program data...109
Writing the environment division (COBOL) ..109
Writing the Data Division (COBOL) and the Declaration Statements
(FORTRAN and BASIC)...110
Checking for current program ..121

Defining program logic ..122
Signing on/off ...122
Retrieving rows...123
Modifying rows ...134
Controlling database recovery..140
Handling error conditions ...141

Implementing and executing an RDM program ..149

Coding RDM program statements (VMS) 153
Coding program data statements..153

INCLUDE view-data ...153
INCLUDE ULT-CONTROL...163

Coding program logic statements ...167
COMMIT...167
DELETE ...169
FORGET ..173
GET..176
INSERT ..190
MARK...195
RELEASE...198
RESET ...200
SIGN-OFF ..202
SIGN-ON..205
UPDATE...210

Contents

Programming Guide vii

Understanding Physical Data Manipulation Language (PDML) 213
Opening/closing data sets .. 214
Adding a primary record ... 215
Reading a primary record ... 215
Updating a primary record .. 218
Deleting a primary record ... 218
Adding a related record .. 219
Reading a related record .. 223
Updating a related record ... 225
Deleting a related record .. 226

Using PDML 227
Table of PDML commands ... 229
Data list parameter keywords ... 233
PDML commands ... 238

ADD-M... 238
ADDVA .. 242
ADDVB .. 249
ADDVC .. 256
ADDVR .. 263
CNTRL (VMS only) .. 269
COMIT ... 273
DEL-M.. 276
DELVD... 278
MARKL .. 283
OPCOM ... 285
RDNXT .. 289
READD .. 294
READM.. 300
READR .. 303
READV .. 309
READX .. 314
RESET... 324
RQLOC.. 326
SINOF.. 328
SINON ... 332
WRITM .. 338
WRITV... 342

Contents

viii P25-0240-49

Optimizing your PDML program 347
Linking your application program ..348
Using logical units of work...350

Reserving resources ..350
Implementing a logical unit of work ..351
Understanding deadlocks and how to prevent them....................................352
Handling errors in a logical unit of work ...353

Managing your application program ..354
Communicating with SUPRA Server..354
Parameter list definitions..356
Initialization and termination requirements...358
Task management ...358
Checking the status parameter ..359

Using standard primary data-set processing...360
Data items you must not refer to ..360
The ADD-M command ...361
Structural maintenance during serial processing ...362

Using standard related-data-set processing ...362
The reference parameter ...363
Improving program efficiency...366

Understanding RDNXT serial processing ...367
Testing database programs ..368
Using extended data item processing ...369

Data-item binding ...369
Code-directed reading..370

PDML examples..371

Sample RDM programs (VMS) 375
Sample COBOL RDM program...375
Sample FORTRAN RDM program..391
Sample BASIC RDM program...407

Index 423

Contents

Programming Guide ix

Contents

x P25-0240-49

About this book

Using this document
The information in this guide is directed toward application programmers
responsible for manipulating data held on SUPRA Server databases.

The SUPRA Server PDM Programming Guide (UNIX & VMS) provides
you with the commands you need to access and manipulate the database
for your application programs.

If you operate under VMS, this manual helps you:

♦ Understand the Relational Data Manager (RDM)

♦ Write an RDM program in COBOL, FORTRAN, and BASIC

♦ Understand the Physical Data Manager (PDM)

♦ Use Physical Data Manipulation Language (PDML)

♦ Use the DBAID utility subset

If you operate under UNIX, this manual helps you:

♦ Understand the Physical Data Manager (PDM)

♦ Use Physical Data Manipulation Language (PDML)

 Programming Guide xi

Document organization
The information in this guide is organized as follows:

Chapter 1—Understanding SUPRA Server from a programming
viewpoint
Describes the Relational Data Manager (RDM), the Directory, the
Physical Data Manager (PDM), MANTIS, and SPECTRA.

Chapter 2—Understanding the Relational Data Manager and
Relational Data Manipulation Language (VMS)
Describes views, how to create, maintain, and test them, and
Relational Data Manipulation Language.

Chapter 3—Using the DBAID utility subset to test views (VMS)
Describes DBAID utility commands to use for testing a view before
testing with applications.

Chapter 4—Writing an RDM program in COBOL, FORTRAN, and
BASIC (VMS)
Describes how to write RDM programs in COBOL, FORTRAN and
BASIC.

Chapter 5—Coding RDM program statements (VMS)
Provides a listing of RDM statements in two groups: program data
statements and program logic statements.

Chapter 6—Understanding Physical Data Manipulation Language
(PDML)
Describes how to use PDML to access and manipulate a database
from an application program.

Chapter 7—Using PDML
Describes how to use PDML to access the PDM and manipulate data
on your SUPRA Server physical databases.

Chapter 8—Optimizing your PDML program
Summarizes common programming procedures that will help you
make the best use of your PDML program.

Appendix A—Sample RDM programs (VMS)
Provides sample RDM programs demonstrating the use of RDML
statements for COBOL, FORTRAN and BASIC.

Index

About this book

xii P25-0240-49

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

 A single item enclosed by
brackets indicates that the item is
optional and can be omitted.
The example indicates that you
can optionally enter a WHERE
clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you
can optionally enter either WAIT
or NOWAIT. (WAIT is underlined
to signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

Programming Guide xiii

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when
using the MONITOR statement.

MONITOR
ON
OFF









Underlining
(In syntax)

Indicates the default value
supplied when you omit a
parameter.
The example indicates that if you
do not choose a parameter, the
system defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you
can enter either STAT or
STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you
can enter multiple host variables
and associated indicator
variables.

INTO :host-variable [:ind-
variable],...

About this book

xiv P25-0240-49

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

 In the UNIX operating
environment, keywords are
case-sensitive, and you must
enter them exactly as shown.

cp *.QAR /backup

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
must substitute the name of a
table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

UNIX

VMS

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (UNIX)
indicating which operating system
is being discussed. Skip any
information that does not pertain
to your environment.

UNIX To delete these files,
return to the shell and
use the rm command.

VMS To delete these files,
return to the command
level and use the
DELETE command.

About this book

Programming Guide xv

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest for VMS
Systems, P25-9062.

Overview

♦ SUPRA Server PDM Digest for VMS Systems, P25-9062

Getting started

♦ SUPRA Server PDM UNIX Installation Guide, P25-1008

♦ SUPRA Server PDM VMS Installation Guide, P25-0147

♦ SUPRA Server PDM UNIX Tutorial, T25-2262

♦ SUPRA Server PDM VMS Tutorial, T25-2263

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(PDM/RDM Support for UNIX & VMS), P25-0022

Database administration tasks

♦ SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM System Administration Guide (UNIX),
P25-0132*

♦ SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220

About this book

xvi P25-0240-49

♦ SUPRA Server PDM Directory Views (VMS), P25-1120

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220**

Application programming tasks

♦ SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM System Administration Guide (UNIX),
P25-0132*

♦ SUPRA Server PDM RDM Administration Guide (VMS), P25-8220

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ MANTIS Planning Guide, P25-1315**

Report tasks

♦ SPECTRA User’s Guide, P26-9561**

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material is available from your regional Cincom education
department.

About this book

Programming Guide xvii

About this book

xviii P25-0240-49

1
Understanding SUPRA Server from a
programming viewpoint

Overview
SUPRA Server is an interactive database system that allows you to use
advanced features for control of data resources and high programming
productivity. You can use SUPRA Server in VMS and UNIX
environments.

 Programming Guide 19

VMS SUPRA Server provides integrated control through the following tools:
Relational Data Manager (RDM), Directory, Physical Data Manager
(PDM), MANTIS, and SPECTRA (VMS/VAX). The following figure
illustrates the programmer’s view of SUPRA Server in VMS
environments.

Application Programs

COBOL

FORTRAN
BASIC

Relational
Data

Manager
DBAID

Directory User
Files

Physical
Data

Manager

Application
Programmer

End User

SPECTRA

MANTIS

Chapter 1 Understanding SUPRA Server from a programming viewpoint

20 P25-0240-49

UNIX SUPRA Server provides integrated control through the following tools:
Directory, Physical Data Manager (PDM), and MANTIS. The following
figure illustrates the programmer’s view of SUPRA Server components in
UNIX environments.

Application Programs

COBOL

 C
MANTIS

Directory User
Files

Physical
Data

Manager

Application
Programmer

End User

Overview

Programming Guide 21

The Relational Data Manager (RDM) (VMS)
SUPRA Server provides a high-level Relational Data Manipulation
Language (RDML) consisting of four basic commands: GET, UPDATE,
INSERT, and DELETE. The Relational Data Manager (RDM) carries out
these and other operations necessary to retrieve and manipulate the
columns requested by your program. You can use these commands to
read and modify data held on PDM and RMS data sets.

After carrying out retrieval and maintenance operations, the RDM
presents the columns to your application program in the required format.
RDM checks data integrity and notifies the program if recovery is
required. Because application programs deal only with the relational view
of data, the database is completely insulated from change in physical
data structure, data storage media, or physical data-set relationships.

In SUPRA Server, all data looks like a relational, two-dimensional table.
You access data at the logical level using defined views or derived
relations stored on the Directory as views. A view is a group of logical
records or rows making up a table of data.
The RDM preprocessor validates the views accessed by your program
and generates appropriate data areas; and then it converts the high-level
logic statements into calls to the RDM run-time system. These calls
perform the actions requested, accessing the database as defined by the
view definitions stored on the Directory.

Chapter 1 Understanding SUPRA Server from a programming viewpoint

22 P25-0240-49

The Directory
The Directory integrates and controls SUPRA Server components. The
RDM manages the logical structure of data, and the PDM manages the
physical structure. The Directory holds a description of both structures
and how they map to each other. It contains metadata (data about data)
rather than your business data. Metadata includes definitions of all the
databases, data sets, views, users, and so on, available within SUPRA
Server. Your DBA maintains these definitions using Directory
maintenance or DBA functions.

Directory views are not available in UNIX environments.

The Physical Data Manager (PDM)
The Physical Data Manager (PDM) manages access to data in
databases. Your DBA defines the database on the Directory. For
efficient use by the PDM, DBA consolidates this definition into a table
called the database description.

The PDM also supports the following recovery techniques:

♦ Task Level Recovery (TLR). Available to all programs and built into
the PDM. TLR allows processing to be split into logical units of work
that can be guaranteed to be fully completed or fully undone. This
feature maintains database integrity.

♦ System Logging. Allows recovery from a device failure. This type
of recovery uses a log file, containing all update and control
functions, and a task log, containing before-images. TLR must be
used in conjunction with system logging.

♦ Shadow Recording. Also allows recovery from device failures and
is an alternative to system logging. Shadow recording can maintain
two identical copies of data sets in the database at the same time.
Each time you update a data set in the main database, an identical
record is written to the second (shadow) data set.

The Directory

Programming Guide 23

MANTIS
MANTIS is an application development system that consists of design
facilities (screen and file) and a programming language. You use
MANTIS to design and create formatted screens and permanent files for
storing and manipulating data.

SPECTRA (VMS/VAX)
SPECTRA is a language that allows you to easily retrieve and update
information held on a SUPRA Server database. Using SPECTRA, you
can produce reports and update files by adding, changing, and deleting
information. You write processes in SPECTRA using views defined on
the Directory and therefore, giving you all the advantages of the RDM.

The SPECTRA filing system stores information about your organization in
central and personal files. Central files contain all the data for your
company or organization. They are database views and are shared by all
users. Because central files often contain sensitive information, your
access to them may be limited depending on your responsibilities.
Personal files are files you create for your specific needs using
information from available central files or data from other sources. Your
personal files are not available to other SPECTRA users unless you
share them.

SPECTRA’s personal file system also contains online documentation and
any processes that have been saved. All SPECTRA commands apply
equally to central and personal files.

A SPECTRA process may combine central and personal files as well as
external RMS files as required. SPECTRA accesses external files
sequentially.

Chapter 1 Understanding SUPRA Server from a programming viewpoint

24 P25-0240-49

2
Understanding the Relational Data
Manager and Relational Data
Manipulation Language (VMS)

The Relational Data Manager (RDM) allows you to write an application
program without knowing the physical structure of the database. RDM
retrieves the data you need while providing database security and
integrity. It does this by logically retrieving the data and presenting it in a
view.

A view is a table containing logical data items that the RDM derives from
different physical locations. Your DBA designs these views and builds in
constraints to prevent you from accidentally destroying the integrity of the
database.

Before accessing views, RDM requires that your DBA first determine
what the database looks like, how it can be accessed, what values go
into it, and who can access it.

 Programming Guide 25

You use COBOL, FORTRAN, or BASIC programs which use Relational
Data Manipulation Language (RDML) maintenance commands to access
RDM and manipulate the database. The following figure illustrates the
programmer’s view of the database when using RDM:

DBA
Perspective

Base
Data Programmer's

Perspective

Application Program

WORKING-STORAGE SECTION
INCLUDE VIEW

SIGN-ON
PROCEDURE DIVISION

.

.

.

.

.

.
GET FIRST VIEW
.
.
.

SIGN-OFF

SUPRA
Directory
(views)

The following list shows the sequence of events between the time you
write the program and when RDM presents the data you requested:

1. You write the program using views your DBA assigns you.

2. RDML preprocessors use the SUPRA Directory database, SUPRAD,
to supply working storage definitions and to convert the high-level
RDML into standard source statements.

3. Standard compilers then convert it into object code.

4. You link the object code into an executable or shareable image.

5. When your program executes, the Directory uses the physical data
descriptions, and RDM uses the logical data descriptions to access
the database and present the data in the view requested by the
application program.

6. A source language preprocessor updates the SUPRAD database
with the following information:

- When your program was preprocessed

- What language your program is written in

- Which views your program uses

 This updating is called program enrollment. In addition to performing
program enrollment, the preprocessors also obtain definitions of
views from the Directory.

To use the RDM, you need to fully understand views, how your DBA
creates and maintains views, and the RDML.

Chapter 2 Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)

26 P25-0240-49

Understanding views
A view is a table containing logical data that the RDM derives from
physical locations on the database using the RDML commands in your
COBOL, BASIC, or FORTRAN program. A view contains rows and
columns, as shown in the following figure:

Customer
Number

Part
Number

Quantity
Ordered

Part
Cost

Total
Cost

Ship
Date

175610 02753 50.00 25000.00 02/10/95

185910 02984

500

10.00 03/12/95

176231 17642 100 20.00 03/15/95

 400.00

 2000.00

 40ROW

Order
Number

1750

1751

1752

COLUMN

CUSTOMER-ORDER-VIEW

Although a view resembles a flat file, there are two important differences:

♦ The ordering of rows within the file is not always controlled by your
maintenance operations

♦ Columns can have null values

Understanding views

Programming Guide 27

Once your DBA has defined the columns included in a view, you can use
all of the view or a subset of the view (a user view). A subset of a view
uses only some of the columns in a view and/or reorders a view to meet
specific needs. User views should be used whenever possible to
improve performance and to reduce resource requirements. The
following table illustrates a view and a user view based on the information
in the preceding figure:

CUSTOMER-ORDER-VIEW
(Entire view)

USER-VIEW
(Subset)

Order Number

Customer Number

Part Number Part Number

Quantity Ordered Quantity Ordered

Part Cost Part Cost

Total Cost

Ship Date

Chapter 2 Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)

28 P25-0240-49

Understanding how your DBA creates and maintains views
The DBA’s responsibility to the database is to:

♦ Describe the logical and physical attributes of data

♦ Define the relationships that exist between units of data

♦ Allow for physical access to the data

♦ Provide security/integrity constraints for the database

♦ Optimize system performance

One of the ways the DBA accomplishes these tasks is by designing and
maintaining views.

Defining views
Your DBA defines the data that should be in each view and how that data
(rows) should be accessed. Your DBA determines which columns
contain fixed values and defines unique and nonunique keys. (For more
information on unique and nonunique keys and required columns, see
“Manipulating data” on page 30.) Because using RDML commands to
modify data in a view also modifies user data in the database, your DBA
also decides the access you have to the data in the row (read-only,
update, etc.).

Changing view design
At any time, your DBA can alter existing views, add new views, change
keys or required columns, and add information to or delete information
from existing views. The DBA has control over changes made to your
view definition and should distribute copies of definitions and changes
that affect you.

Changing database structure
Your DBA can make many changes to the structure of the database or
add new data items, without requiring you to change or re-precompile
programs. However, if your DBA changes the length of data items or
deletes a data item(s), you must re-precompile programs and rebuild
images that use them if these programs use views containing these data
items. In this case, other changes might be required as well.

Understanding how your DBA creates and maintains views

Programming Guide 29

Understanding Relational Data Manipulation Language
The RDML is a high-level language you use to sign on and off the
system, to manipulate data, and to control data recovery. There are also
a few special function statements. Before you run an RDML application
program, first link it with the RDM run-time system as described in
“Implementing and executing an RDM program” on page 149. For
detailed information on syntax and usage considerations, see “Coding
RDM program statements (VMS)” on page 153.

Signing on/off
Use SIGN-ON to establish communication between your program and
the RDM. It identifies you as the user and allows access to views based
on your user name. Before issuing a SIGN-ON, have your program call
the routine CSV_SETUP_REALM. This routine allows you to specify the
open mode only for those data sets required by your application program.
By calling this routine, you avoid possibly impairing system performance
since you are not opening files that your program does not require.

SIGN-OFF informs the RDM that you want to terminate your session.

Manipulating data
You use these RDM statements to perform maintenance on a view and
manipulate all data on an occurrence-by-occurrence basis:

♦ DELETE. Removes a row from the view (see “Using DELETE” on
page 136 and “DELETE” on page 169).

♦ GET. Retrieves a row from the view (see “Using GET to control
record holding” on page 132 and “GET” on page 176).

♦ INSERT. Inserts a new row into the view (see “Using INSERT” on
page 138 and “INSERT” on page 190).

♦ UPDATE. Updates column values in an existing row in the view
(see “Using UPDATE” on page 135 and “UPDATE” on page 210).

Before performing maintenance on a view, you must first retrieve it. You
retrieve rows using designated key values.

Chapter 2 Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)

30 P25-0240-49

Retrieving rows sequentially using the GET statement
You can use GET to retrieve rows by the order in which they appear in
the physical files. For detailed information on using GET, see “GET” on
page 176.

Retrieving rows using keys defined by your DBA
Each view contains one or more columns that your DBA may designate
as unique or nonunique keys to the view. You can access a set of rows
by assigning values to the keys of the view (if any exist). You use the
keys to locate a specific row or to perform a generic read. Both types of
reads return all qualifying rows from the view, one at a time.

Your DBA can also assign fixed values, or constants, to impose
constraints on the program and thus limit your application to retrieve or
update selected rows. In addition, required columns must be present
when RDM is constructing the row; otherwise, the row is skipped and not
retrieved.

Unique keys
A simple unique key is a single column designated as the key to that
view. Using this key value, you can select and retrieve data. A key must
have a valid, non-null value.

A compound unique key is several columns designated as unique logical
keys, and the combination of the key values is unique. This implies a
connection between the columns. For example, to check customer
orders for a certain part number, you use a view with both customer
number and part number as key values. RDM retrieves the specific
customer number and part number combination if it is present.

Understanding Relational Data Manipulation Language

Programming Guide 31

Nonunique keys
A nonunique key allows more than one row to contain the same key. An
example is a customer file with a list of notes or comments concerning
each customer. To retrieve a list of comments for a customer, you can
define the customer number as a single nonunique key. When the
program does its first GET using a customer number, it retrieves the first
comment for that customer. A subsequent GET retrieves the second
comment; the third GET the third comment; and so on.

A compound nonunique key is more than one column designated as a
nonunique key. However, all of the nonunique keys together still do not
completely describe the row occurrence as unique. You can still have
more than one row with the same compound nonunique key.

If your DBA does not specify a column as a nonunique key, you can only
retrieve the rows sequentially, not based on a value. Your DBA can
define nonunique keys in two ways:

♦ Omit a key that would uniquely define the view.

♦ Explicitly define a column as a nonunique key. Then you can
perform searches based on that value.

Assigning values to unique and nonunique keys
Your DBA can define a logical key with a fixed value by using the
keyword CONST in the column definition and then assigning a literal
value to the column. You cannot change the value of such columns.
RDM uses this value as if the program had supplied it as a key. RDM
treats a CONST key as a NONUNIQUE key with the fixed value supplied
unless you specify the keyword UNIQUE before CONST.

For example, if your DBA defined a CONST value of TN in the state
column, then, no matter what you do, the program can retrieve and
update only Tennessee customers.

Required columns
A required column is one which must contain a valid and non-null value
for the row to be included in the view. A column is not required by default
and does not need a value. If you want to indicate null, insert the NASI
(see “Validating data” on page 115). Blanks signify a null value for zoned
and packed data items. All logical keys are required columns—they must
have a valid non-null value.

In summary, your DBA defines certain columns as required, keys, or
fixed values. Remember, columns defined as keys or fixed values are
also considered required columns.

Chapter 2 Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)

32 P25-0240-49

Controlling data recovery
COMMIT and RESET control task-level database recovery. The
statements function differently, depending on the environment and
recovery system supported. For more information on the use of RDML,
see “Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)”
on page 103.

Using special function RDML statements
You can use the following special RDML statements :

♦ MARK. Records the current position of the view established by the
most recent GET, INSERT, or UPDATE statement (see “MARK” on
page 195).

♦ FORGET. Removes the specified mark from the list of marks in use
(see “FORGET” on page 173).

♦ RELEASE. Releases the internal storage space used by a view
(see “RELEASE” on page 198).

Understanding Relational Data Manipulation Language

Programming Guide 33

Testing views using the DBAID Utility subset
The DBAID Utility subset is an online tool that allows the DBA to define a
new view, open the view, issue RDML statements, and examine the
results. The DBA can then change the view, if necessary, reorder for
efficiency, or try different access methods. These activities have no
impact on the Directory database, SUPRAD, until the DBA saves any
changes.

Certain DBAID commands are also available to non-DBA users for use
when constructing programs that use RDM views. Using the DBAID
Utility subset of commands, you can test a view before testing with
applications until you are sure that the view is correctly defined. You can
also use the DBAID Utility subset as an educational tool for immediate
hands-on experience with the views being accessed.

Chapter 2 Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)

34 P25-0240-49

3
Using the DBAID Utility subset to test
views (VMS)

A subset of the DBAID Utility commands is available to the application
programmer to use for testing a view before testing with applications.
Testing views helps you determine how to design applications using
views. Using DBAID, you can run test cases until you are satisfied that
the view is correctly defined.

DBAID has five types of commands:

♦ RDML commands. Enable you to use test data with a defined view
to make sure the view is properly defined.

♦ Editing commands. Enable you to define and modify a view.

♦ System commands. Enable you to display information about the
currently executing DBAID Test Facility.

♦ Built-in view commands. Enable you to inspect the view or obtain
information after it is opened.

♦ Statistics commands. Enable you to start, stop, and display
statistics on both the logical and physical levels.

 Programming Guide 35

Accessing DBAID
To access the DBAID test facility, you can either: (1) select the DBAID
Test Facility from the SUPRA Server facilities screen; or (2) set up a
symbol or command file. A command file called RUNDBAID, which is
located in the directory SUPRA COMS, is supplied to invoke DBAID. Use
the SUPRA_COMS:SUPRA_SYMBOL.COM procedure to define the
RUNDBAID symbol. For example, to invoke DBAID with database
TESTDB, you could enter $RUNDBAID TESTDB or just $RUNDBAID
with no parameters. If you do not enter any parameters and you are not
using the logical CSI_SCHEMA, you are prompted for the database
name.

If you have an access authority of Database Administrator or Privileged
and want to list, edit, save, and so on, a view, then list the view before
you open it. This makes the text of the view known to DBAID. Such a
view is called a virtual view. You can list any view in this way. However,
if you open a view first, you must be authorized to use that view.

The following tables alphabetically list all the commands within each
category and provide a brief description and a section reference for
detailed information.

RDML commands

Command Description Section

= Reissues the previous RDML command. “= command” on
page 42

BYE Exits DBAID. “BYE command” on
page 43

CAUTIOUS Prohibits an automatic COMMIT. “CAUTIOUS command”
on page 45

COMMIT Issues an RDML COMMIT. “COMMIT command”
on page 52

DELETE Issues an RDML DELETE. “DELETE command” on
page 53

ERASE Issues an RDM RESET and returns an X
FSI.

“ERASE command” on
page 56

Chapter 3 Using the DBAID Utility subset to test views (VMS)

36 P25-0240-49

Command Description Section

FORGET Removes the specific mark from the list of
marks in use.

“FORGET command”
on page 61

GET Issues an RDML GET command that
retrieves and displays the requested row.

“GET command” on
page 62

GO Issues multiple RDML GET commands
and displays the records in a tabular
format.

“GO command” on
page 68

INSERT Issues an RDML INSERT. “INSERT command” on
page 72

KEEP Prohibits an automatic RESET. “KEEP command” on
page 77

MARK Issues an RDML MARK. Marks the
current position of the view-name
established by the previous GET.

“MARK command” on
page 79

OPEN Readies either a virtual or stored view for
use.

“OPEN command” on
page 81

RELEASE Issues an RDML RELEASE. Closes all
opened views and releases the storage
occupied by the views.

“RELEASE command”
on page 85

RESET Issues an RDML RESET. “RESET command” on
page 86

SIGN-OFF Signs off the user from DBAID. “SIGN-OFF command”
on page 88

SIGN-ON Identifies the user to DBAID. “SIGN-ON command”
on page 89

SURE Causes a COMMIT after each successful
INSERT, UPDATE or DELETE.

“SURE command” on
page 93

UPDATE Issues an RDML UPDATE. “UPDATE command”
on page 95

Accessing DBAID

Programming Guide 37

Editing commands

Command Description Section

UNDEFINE Removes a defined virtual view. “UNDEFINE command”
on page 94

System commands

Command Description Section

* Used with other commands to indicate the
most recent view name used.

“* command” on
page 42

LINESIZE Specifies width of line for DBAID output. “LINESIZE command”
on page 78

MARKS Lists all the open MARKs and the views
they are marking.

“MARKS command” on
page 80

PAGESIZE Specifies the number of lines on the
page/screen for DBAID output.

“PAGESIZE command”
on page 83

USER-LIST Displays the attribute list for the view
named.

“USER-LIST command”
on page 98

VIEWS Displays all views active in DBAID. “VIEWS command” on
page 101

Chapter 3 Using the DBAID Utility subset to test views (VMS)

38 P25-0240-49

Built-in view commands

Command Description Section

BY-LEVEL Displays the column names in the view by
level of occurrence.

“BY-LEVEL command”
on page 43

COLUMN-DEFN Displays the full description of a column in
a view.

“COLUMN-DEFN
command” on page 46

COLUMN-TEXT Displays the short and long text for a
column in a view.

“COLUMN-TEXT
command” on page 51

FIELD-DEFN Displays the full description of a column in
a view.

“FIELD-DEFN
command” on page 56

FIELD-TEXT Displays the short and long text for a
column in a view.

“FIELD-TEXT
command” on page 59

VIEW-DEFN Displays a condensed description of the
view.

“VIEW-DEFN
command” on page 99

VIEWS-FOR-
USER

Lists the views related to the signed-on
user along with the short text for the view.

“VIEWS-FOR-USER
command” on page 102

Statistics commands

Command Description Section

PRINT-STATS Prints the current statistics. “PRINT-STATS
command” on page 84

SHOW-
NAVIGATION

Allows you to verify the accuracy of the
access paths used by RDM to access the
underlying entities during a view open.

“SHOW-NAVIGATION
command” on page 87

STATS Displays the current statistics for all open
views or for a view you specify.

“STATS command” on
page 90

STATS-OFF Prints the current statistics and then
disables the statistics gathering.

“STATS-OFF
command” on page 91

STATS-ON Initializes statistics to 0 and then enables
the gathering of statistics on user views on
both the logical and physical levels.

“STATS-ON command”
on page 92

Accessing DBAID

Programming Guide 39

Signing on to DBAID
You sign on to DBAID by responding to the PLEASE SIGN ON prompt
with your 1- to 30-character user name. If there is no password
associated with your user name, simply press the RETURN key. However,
you must supply a password if one was defined for you on the Directory.
The password can be 1–8 alphanumeric or printable characters. You can
enter the password either on the same line as the user name, or on a
separate line. If you enter the password on the same line as the user
name, you must precede the password with a space. If you enter the
password on a separate line, it will not be echoed on-screen.

In the following example, INVENTORY-SYSTEM is the user name and
PETER is the password. (Notice that a space precedes the password
because it is on the same line as the user name.) When you successfully
sign on, you receive the message SUCCESSFUL COMPLETION -
SERVICE LEVEL nn. You can then begin entering commands.

 SUPRA SERVER RELEASE 2.n
 WELCOME TO DBAID - SERVICE LEVEL nn

PLEASE SIGN ON.
>INVENTORY-SYSTEM PETER
FSI: * VSI: = MSG: SUCCESSFUL COMPLETION - SERVICE LEVEL nn

Chapter 3 Using the DBAID Utility subset to test views (VMS)

40 P25-0240-49

Accessing the SUPRA Server HELP facility
SUPRA Server also provides a HELP facility. You can use HELP in two
ways:

♦ Enter HELP in reply to a DBAID prompt. SUPRA Server displays a
list of topics available within the HELP facility. You may then select
the topic by entering enough of the topic name for the selection to be
unique. Some topics also have a list of subtopics.

♦ Directly access a topic by entering the topic name with the command
HELP as shown in the following example:
HELP DEL

 This entry gives information specific to DELETE.

Note, however, to display information for the * command, you must use
HELP ASTERISK. If you enter HELP *, the * acts as a wildcard.
Wildcard means that all topics are included in the HELP description.

You can use the optional logical DBAID_HELP_NOSPAWN (set to
TRUE) to call LBR$OUTPUT_HELP instead of spawning a subprocess
to display the HELP for DBAID.

Accessing DBAID

Programming Guide 41

* command
Use the asterisk character in the following two ways: (1) as a substitute
for the last view name used or, (2) to denote a comment line by entering *
in the first position after the prompt.

*

General consideration

 Each section containing a command that supports * (as a substitute for
the last view name used) describes how to use it.

Examples

♦ Using the * to denote a comment:
 *ANY COMMENTS MAY BE PUT ON A DBAID LINE AFTER

 *AN ASTERISK IN FIELD 1.

♦ Using the * as a substitute for the last view name used:
 OPEN VIEW

 GET * (Performs GET on VIEW)

 OPEN VIEW2 = * column1,column5

 GET * (Performs GET on VIEW2)

= command
Use = to perform an exact reissue of the previous RDML command.

=

General consideration

 This command repeats an invalid command if the first key word is
correct.

Example In this example, = reissues the GET NEXT command preceding it.
GET NEXT CUST-PRODUCT-VIEW

=

Chapter 3 Using the DBAID Utility subset to test views (VMS)

42 P25-0240-49

BYE command
Use BYE to exit the DBAID Test Facility.

BYE

General considerations

♦ BYE returns you to VAX/VMS processing.

♦ Any unsaved virtual views are erased.

BY-LEVEL command
Use BY-LEVEL to display the field names in a view by level of occurrence
starting with the 0 level, followed by level 1, and so on. RDM generates
the column number when displaying this data.

BY-LEVEL [view-name [column-number]]

view-name

Description Optional. Names the valid, open view whose column names you want to
display.

Considerations

♦ If you omit this parameter, SUPRA Server displays all column names
for all of your opened views.

♦ Entering * instead of a view name causes DBAID to substitute the
last view name used.

BYE command

Programming Guide 43

column-number

Description Optional. Specifies the number of the field whose name is to be
displayed.

Format Integer value.

Considerations

♦ If you use this parameter, you must specify a view name.

♦ If you omit this parameter, SUPRA Server displays all column names
of the specified view.

Example This example displays the column names in the views CUST-PROD,
CUSTOMER and TEST. They are listed by level of occurrence.

>BY-LEVEL VIEW NAME FIELD NAME LEVEL
NUMBER

1 CUST-PROD CUST-NO 0
2 CUST-PROD PROD-NO 1
3 CUST-PROD RENT 1
4 CUST-PROD MAINT 1
5 CUST-PROD INSTALL-DATE 1
6 CUST-PROD CANCEL-DATE 1
7 CUST-PROD PURCHASE-PRICE 1
1 CUSTOMER CUST-NO 0
2 CUSTOMER NAME 0
3 CUSTOMER STATE 0
1 TEST ZONED5 1
2 TEST PACKED5 1
3 TEST KEY2 1

Chapter 3 Using the DBAID Utility subset to test views (VMS)

44 P25-0240-49

CAUTIOUS command
Use CAUTIOUS to disable the DBAID automatic COMMIT facility. This
command is the opposite of SURE. When you use CAUTIOUS, DBAID
does not automatically issue a COMMIT when an RDML INSERT,
UPDATE or DELETE is issued. Instead, you must issue the COMMIT.

CAUTIOUS

General consideration

 DBAID normally issues a COMMIT after every successful RDML
modification. CAUTIOUS is not required; however, it gives you more
control over COMMIT commands when updating the database.

CAUTIOUS command

Programming Guide 45

COLUMN-DEFN command
Use COLUMN-DEFN to display the full description of columns in a view.
For compatibility with previous releases of SUPRA Server, you can use
FIELD-DEFN in the same manner as COLUMN-DEFN.

COLUMN-DEFN [view-name [column-name]]

view-name

Description Optional. Names the valid, open view to be used.

Considerations

♦ If you omit this parameter, COLUMN-DEFN displays all column
descriptions for all of your opened views.

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

column-name

Description Optional. Identifies the column whose description you want to display.

Format The column must already be a part of the view.

Considerations

♦ If you use this parameter, you must have specified a view-name.

♦ If you omit this parameter, COLUMN-DEFN displays all column
descriptors for each column of the specified view, one at a time.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

46 P25-0240-49

Example This example displays a description of the MANUAL-TITLE column in the
REVIEW-DETAILS view. See the tables following this example for an
explanation of each column descriptor.
VIEW-NAME (+) REVIEW-DETAILS

COL-NAME (+) MANUAL-TITLE

COL-POS (+) 20

COL-LEN (+) 30

COL-ASI-POS (+) 109

COL-DEC (+) 0

COL-OUTP-LEN (+) 30

COL-MASK-LEN (-) 0

COL-FORMAT (+) C

COL-MASK (-)

COL-HEADING (-)

COL-DEL-OPT (+) Y

COL-INS-OPT (+) Y

COL-UPD-OPT (+) Y

COL-REDUND (+) N

COL-CONSTANT (+) N

COL-LEVEL (+) 1

COL-KEY-NUM (+) 0

COL-REQUIRED (+) Y

COL-UNIQUE (+) Y

COL-EDIT-TRANS (+)

COL-ORDERING (-)

COL-SIGNED (+) N

COL-NULLS-OK (+) N

COL-NULL-LEN (-) 0

COL-NULL-VAL (-)

COL-DOMAIN (-)

COL-VAL-TYP (-)

COL-GET-VAL (+) Y

COL-MIN-LEN (-) 0

COL-MIN-VAL (-)

COL-MAX-LEN (-) 0

COL-MAX-VAL (-)

COL-VAL-TABLE (-)

COL-EXIT (-)

COL-SRC-TYP (+) F

COL-SRC-COL (+) BOOK-REVIEWED

COL-SRC-REL (+) BOREBOOK

COL-INT-REL (+) BORE

COL-RC (+)

COLUMN-DEFN command

Programming Guide 47

Keys for the view

Column descriptor Explanation
VIEW-NAME Name of the view
COL-NAME Name of the column

Data needed to read the column from the row

Column descriptor Explanation
COL-POS Offset of column value from start of row
COL-LEN Length of column value
COL-ASI-POS Distance ASI for column is offset from start of

user buffer

Data needed to display the column

Column descriptor Explanation
COL-DEC Number of decimal places
COL-OUTP-LEN Edited output length
COL-MASK-LEN Length of output mask
COL-FORMAT Column format
COL-MASK Column mask
COL-HEADING Column heading

Chapter 3 Using the DBAID Utility subset to test views (VMS)

48 P25-0240-49

Logical data about the column

Column descriptor Explanation
COL-DEL-OPT Y = Column may be deleted
COL-INS-OPT Y = Column may be inserted
COL-UPD-OPT Y = Column may be updated
COL-REDUND Y = Column is redundant
COL-CONSTANT Y = Column is a constant
COL-LEVEL Level of occurrence
COL-KEY-NUM 0–9 = Column key number
COL-REQUIRED Y = Column is required
COL-UNIQUE Y = Column is unique
COL-EDIT-TRANS Reserved for future use
COL-ORDERING A = Ascending order, D = Descending order
COL-SIGNED Y = Column is signed

Data about null value for the column

Column descriptor Explanation
COL-NULLS-OK Y = Nulls are allowed
COL-NULL-LEN Length of the null value
COL-NULL-VAL Null value in external format

COLUMN-DEFN command

Programming Guide 49

Validation criteria for the column

Column descriptor Explanation
COL-DOMAIN Domain name, if any
COL-VAL-TYP Validation type (R = Range, T = Table, E =

Exit)
COL-GET-VAL Y = Validation done after
GETCOL-MIN-LEN Length of minimum value
COL-MIN-VAL Minimum value in external format
COL-MAX-LEN Length of maximum value
COL-MAX-VAL Maximum value in external format
COL-VAL-TABLE Validation table name
COL-EXIT Validation exit name

Source column data

Column descriptor Explanation
COL-SRC-TYP Source type for the column (F = Data set, V =

View).
COL-SRC-COL If COL-SRC-TYPE is F, this field contains the

logical data item name; if COL-SCR-TYPE is
V, this field contains the source column
name.

COL-SRC-REL If COL-SRC-TYPE is F, this field contains the
physical data item name; if COL-SRC-TYPE
is V, this field contains the source view name.

COL-INT-REL If COL-SCR-TYPE is F, this field contains the
data set name; if COL-SRC-TYPE is V, this
field contains the user view name.

COL-RC If COL-SRC-TYPE is F, this field contains the
record code, if any.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

50 P25-0240-49

COLUMN-TEXT command
Use COLUMN-TEXT to display the comments for a column in a view.
For compatibility with previous releases of SUPRA Server, you can use
FIELD-TEXT in the same manner as COLUMN-TEXT.

COLUMN-TEXT [view-name [column-name]]

view-name

Description Optional. Names the valid, open view.

Considerations

♦ If you omit this parameter, the COLUMN-TEXT command displays
the short and long text for all of your opened views.

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

column-name

Description Optional. Identifies the column whose text you want to display.

Format The column must already be a part of the view.

Considerations

♦ If you use this parameter, you must specify a view-name.

♦ If you omit this parameter, COLUMN-TEXT displays the comments
for all columns.

COLUMN-TEXT command

Programming Guide 51

COMMIT command
Use COMMIT to issue an RDM COMMIT request. All updates since the
last COMMIT are made permanent in the database.

COMMIT

General consideration

 DBAID automatically issues a COMMIT after every successful
modification. COMMIT is not required in DBAID.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

52 P25-0240-49

DELETE command
Use DELETE to issue an RDM DELETE request, which removes a
view-record occurrence from the database.

DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows that satisfy the logical-key qualification of the
GET issued before the DELETE.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in a view.

view-name

Description Required. Names the valid, opened view that contains the record(s) you
want to delete.

Considerations

♦ Before performing the DELETE you should perform a successful
GET that contains a FOR UPDATE clause, in case the record
changes between the GET and the DELETE.

♦ You can enter * instead of a view-name. This causes DBAID to
substitute the last view-name used.

General considerations

♦ RDM deletes records only if the ALLOW clause specifies DEL or
ALL. (See the fourth item in the following examples.)

♦ RMS interfile integrity is only maintained for those files within the
view. RDM does not check indexes to other files not included in the
Access Set.

DELETE command

Programming Guide 53

Examples

♦ This example deletes one occurrence of SAMPLE-VIEW obtained by
using the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE SAMPLE-VIEW

♦ This example deletes all occurrences of rows:
 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE ALL SAMPLE-VIEW

The above example works as if the following loop were performed:

 GET FIRST SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 LOOP.

 GET NEXT SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 DELETE SAMPLE-VIEW.

 GO TO LOOP.

 CONTINUE.

♦ This example deletes all rows in SAMPLE-VIEW:
 GET SAMPLE-VIEW.

 DELETE ALL SAMPLE-VIEW.

♦ This RMS example shows the statements used by the GET and
DELETE commands to delete all rows from the CUST and ORDR
files:

 NAME: CUST-ORDER-VIEW

 KEY CUST-NO

 KEY ORDR-NO

 KEY ORDR-PROD-NO

 ACCESS CUST USING CUST-NO ALLOW DEL INS

 ACCESS ORDR USING (CUST-NO, ORDR-PROD-NO) ALLOW ALL

 GET CUST-ORDER-VIEW

 DELETE ALL CUST-ORDER-VIEW

Chapter 3 Using the DBAID Utility subset to test views (VMS)

54 P25-0240-49

♦ This RMS example shows the statements used by the GET and
DELETE for a deletion using an alternate index. The physical key
ORDR- PROD-NO is the alternate index for PRODNKEY:

 NAME: CUST-ORDER-PROD-VIEW

 KEY CUST-NO

 KEY ORDR-NO

 KEY ORDR-PROD-NO

 PROD DESC

 ACCESS CUST USING CUST-NO

 ACCESS ORDR VIA PRODNKEY

 USING (CUST-NO, ORDR-NO, ORDR-PROD-NO) ALLOW ALL

 ACCESS PROD USING ORDR-PROD-NO ALLOW ALL

 GET CUST-ORDER-PROD-VIEW

 DELETE CUST-ORDER-PROD-VIEW

DELETE command

Programming Guide 55

ERASE command
Use ERASE to cause DBAID to issue an RDM RESET if an X FSI is
returned from an RDML command. This command is the opposite of
KEEP.

ERASE

FIELD-DEFN command
Use FIELD-DEFN to display the full description of columns in a view.

FIELD-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Considerations

♦ If you omit this parameter, SUPRA Server displays all column
descriptions for all of your opened views.

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

56 P25-0240-49

column-name

Description Optional. Identifies the column whose description is to be displayed.

Format The column must already be a part of the view.

Considerations

♦ If you use this parameter, you must have specified a view-name.

♦ If you omit this parameter, SUPRA Server displays all column
descriptors for each column of the specified view, one at a time.

Example This example displays the full description of all columns in all open views.
See the table following this example for an explanation of each column
descriptor.

> FIELD-DEFN
VIEW-NAME (+) CUSTOMER
FIELD-NAME (+) CUST-NO
FIELD-POS (+) 0
FIELD-LEN (+) 5
ASI-POS (+) 60
FIELD-DEC (+) 0
OUTPUT-LEN (+) 5
MASK-LEN (+) 15
FORMAT (+) Z
EDIT-MASK (+) ZZZZZZZZZZZZZZ9
HEADING (+) CUST;NO
DELETABLE (+) Y
INSERTABLE (+) Y
REPLACABLE (+) N
FIELD-LVL (+) 0
KEY-NUMBER (+) 1
REQUIRED (+) Y
UNIQUE (+) Y
EDIT-TRANS (+) E
ORDERING (-)
MORE

FIELD-DEFN command

Programming Guide 57

Column descriptor Explanation
VIEW-NAME The name of the view being described.
FIELD-NAME The name of the column being described.
FIELD-POS The position of the column in the user’s

buffer, starting at byte 0.
FIELD-LEN The length of the column.
ASI-POS The position of the ASI of this column in the

user buffer.
FIELD-DEC The number of decimal places in the column.
OUTPUT-LEN The length of the output column.
MASK-LEN The length of the edit mask.
FORMAT The format of the column.
EDIT-MASK Not implemented for this release.
HEADING Not implemented for this release.
DELETABLE Indicates whether the record may be deleted.
INSERTABLE Indicates whether the record may be inserted.
REPLACEABLE Indicates whether this column may be

updated.
FIELD-LVL Indicates the level of the record which

contains this column.
KEY-NUMBER Indicates which key column this is; 0 indicates

the column is not a key, 1 is the first key, and
so on, up to 9.

REQUIRED Indicates the column must not be null when
performing updates or inserts.

UNIQUE Indicates the column is a unique key.
EDIT-TRANS Not implemented for this release.
ORDERING Indicates a linkpath is ordered using this

column.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

58 P25-0240-49

FIELD-TEXT command
Use FIELD-TEXT to display the comments for a column in a view.

FIELD-TEXT [view-name [column-name]]

view-name

Description Optional. Names the valid, opened view.

Format Must be a valid and opened view.

Considerations

♦ If you omit this parameter, SUPRA Server displays all column
descriptions for all of your opened views.

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

FIELD-TEXT command

Programming Guide 59

column-name

Description Optional. Identifies the column whose text is to be displayed.

Format The column must already be part of the view.

Considerations

♦ If you use this parameter, you must specify a view-name.

♦ If you omit this parameter, the comments for all columns are
displayed.

Example This example displays the comments for all columns in all open views:

> FIELD-TEXT
 VIEW NAME FIELD NAME
--
L15-A3 A-CTRL
--
 COMMENTS
--
FIRST COMMENT
SECOND COMMENT
--
MORE
 VIEW NAME FIELD NAME

L15-A3 A-DATA
--
NO COMMENT
-- ***MORE***

Chapter 3 Using the DBAID Utility subset to test views (VMS)

60 P25-0240-49

FORGET command
Use FORGET to remove the specific mark from the list of marks in use
and frees the storage allocated by a previous MARK.

FORGET mark-name

mark-name

Description Required. Specifies what mark information should be forgotten.

Format 1–30 alphanumeric characters

Consideration Must be a name you assigned with MARK.

General consideration

 Once you issue a FORGET, the indicated mark is released and cannot
be used without issuing a new MARK.

FORGET command

Programming Guide 61

GET command
Use GET to retrieve and display a row for the indicated view.

GET

NEXT
LAST
SAME
FIRST
PRIOR























−view name

[FOR UPDATE]

AT mark-name

USING literal1 [literal2 literal3 ...literaln]

Chapter 3 Using the DBAID Utility subset to test views (VMS)

62 P25-0240-49

NEXT
LAST
SAME
FIRST
PRIOR























Description Optional. Modifies the order of retrieval of rows.

Default NEXT If no current position exists, NEXT defaults to FIRST.

Considerations
♦ For a unique key:

NEXT Retrieves either the row immediately after the
current row or the first row if no current position
exists.

LAST Retrieves the last row.
SAME Retrieves the latest row if a current position exists.
FIRST Retrieves the first row in the view.
PRIOR Retrieves either the row immediately before the

current row or the last row if no current position
exists. Use GET PRIOR only in connection with a
USING key phrase for predictable results.

GET
PRIOR
and GET
LAST

Cannot be performed on primary data sets. An
error is returned.

♦ For a nonunique key:
NEXT Retrieves the next occurrence of the row within the

generic group.
LAST Retrieves the last occurrence of the row.
SAME Retrieves the latest row if a current position exists.
FIRST Retrieves the first occurrence of the row with the

indicated key.
PRIOR Performs a read reverse within the group of

nonunique keyed records.

♦ For RMS, GET LAST and GET PRIOR are not supported. If you
want to access base RMS data sets, supply the key.

GET command

Programming Guide 63

view-name

Description Required. Names the valid, opened view to be used.

Consideration Entering * instead of a view-name causes DBAID to substitute the last
view-name used.

FOR UPDATE

Description Optional. Allows you to lock out other users’ modifications to the row you
are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications
dependent upon the current contents of the row.

♦ If you do not need to be certain of the content of the row, use GET
without the FOR UPDATE phrase. When the UPDATE or DELETE
function is performed, the Automatic Hold facility performs the lock
before modifying the record.

♦ FOR UPDATE locks all physical resources until you issue another
GET or an INSERT, UPDATE, DELETE, COMMIT, or RESET. This
practice might lead to system inefficiency.

AT mark-name

Description Optional. Repositions a view previously marked with MARK.

Consideration USING and AT may not be used with the same GET command.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

64 P25-0240-49

USING literal1 [literal2 literal3 ... literaln]

Description Optional. Identifies a value or set of values for a keyed GET.

Format The values must be part of a valid view. Separate the items with a space
and use either character, hexadecimal, or numeric data. Character and
hexadecimal data must be enclosed in quotes; numeric data does not.
For example:

Using ‘ABCD’ - Character data

Using X‘A10C’ - Hexadecimal

Using 1234 - Numeric data

Using 123 ‘ABC’ - Combination (two keys)

Considerations

♦ The number of keys specified in the GET must be less than or equal
to the number of keys in your specified attribute list. No more than
nine keys are allowed in one view.

♦ Any omitted keys are treated as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a view
and a sequential scan of many records. All occurrences of a
particular unspecified column are returned as long as the other keys
are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your attribute list.

GET command

Programming Guide 65

Examples

♦ This example returns the row whose key is JONES from the view
LASTNAME. No position is specified, so NEXT is assumed.
However, since this is the first GET, the first (or only) record with this
key is returned:

 GET LASTNAME USING 'JONES'

♦ This example returns the next row with the key JONES. When you
have read all JONES records, you get the message OCCURRENCE
NOT FOUND:

 GET * USING 'JONES'

♦ This example returns the first JONES with the initials APQ:
 GET * USING 'JONES' 'APQ'

♦ This example uses the default NEXT. The next record is returned
(the record following JONES APQ). You can use this command
repeatedly to get all records in a view, such as the rest of the
Joneses, then all Robinsons, then all Smiths, and so on:

 GET *

♦ In this RMS example, GET retrieves data from the ORDR file using
the file physical key:

 GET FIRST ORDER-VIEW USING 225600x100

♦ This RMS example uses the view ORDER-VIEW with GET to retrieve
data from the ORDR file:

 NAME: ORDER-VIEW

 KEY FULL-ORDR-KEY

 ORDR-SALE-TOTAL

 ORDR-DATE-OF-SALE

 ACCESS ORDR USING FULL-ORDR-KEY

 GET ORDER-VIEW

♦ In this RMS example, the physical key of the file ORDR consists of
three subparts. A generic read is performed when the application
program only supplies a value for ORDR-CUST-NO or a combination
of ORDR- CUST-NO and ORDR-NO on the GET:

 GET ORDER-VIEW USING CUST01

 GET ORDER-VIEW USING CUST01 ORDR02

Chapter 3 Using the DBAID Utility subset to test views (VMS)

66 P25-0240-49

♦ All products for the requested order are returned when the values for
CUST-NO and ORDR-NO are supplied. The GET command uses
the full physical key if all three logical keys are supplied:

 GET ORDER-VIEW USING CUST01

 ORDR02

 PART11

♦ This RMS example is similar to the preceding example. However,
ORDR- PROD-NO is left out of the USING phrase to force a generic
read of the ORDR file:

 GET ORDER-VIEW USING CUST02

 You can leave fields out of the USING clause from the right. RDM
generic reads can be performed only from within RDM based on the
logical key supplied within the USING clause in the ACCESS
statements.

GET command

Programming Guide 67

GO command
Use GO to issue a GET request based on a single key followed by a
series of sweeping GET requests scanning one-to-many relationships
(the records are displayed in a tabular format).

GO NEXT
PRIOR

 START

NEXT
LAST
SAME
FIRST
PRIOR
AT

 [FOR

FROM []

USING







−





























































view name

mark - name

number - of - rows]

literal literal literal1 2 n...

NEXT
PRIOR







Description Optional. Specifies the positional modifier for subsequent retrievals after
the initial access by GET.

Default NEXT

view-name

Description Required. Names the valid, opened view to be accessed.

Consideration Entering * instead of a view-name causes DBAID to substitute the last
view-name used.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

68 P25-0240-49

START

NEXT
LAST
SAME
FIRST
PRIOR
AT mark - name

















































Description Optional. Specifies GET positional modifier for the initial access of the
database.

Default FIRST If GO NEXT is specified

PRIOR If GO PRIOR is specified

FOR number-of-rows

Description Optional. Indicates the number of rows (or number of GET NEXTs minus
1) to be performed.

Default 16,777,216

Format Numeric characters

Consideration GET NEXTs will be issued until the count is exhausted or until the last
row is retrieved, whichever occurs first.

GO command

Programming Guide 69

FROM []

USING
literal literal literal1 2 n...











Description Optional. Identifies a value or set of values used for a keyed GET.

Format Either character or numeric data. Character data, if it includes blanks,
must be enclosed in quotes; numeric data does not.

Options FROM The key values are used only on the initial access; the
scan is unqualified.

USING The key values are used for both the initial access and
the subsequent scan.

Considerations

♦ The number of keys specified in GET must be less than or equal to
the number of keys in your specified attribute list.

♦ Any omitted keys are treated as generic keys. The use of generic
keys allows for both direct access to a view and a sequential scan of
many records. All occurrences of a particular unspecified key are
returned as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your attribute list.

General considerations

♦ The output is displayed in columns. If more data is to be displayed
than fits on a screen, an alternate format is used.

♦ After GO displays a page of records (see “PAGESIZE command” on
page 83), the ***MORE*** prompt is issued. You may continue the
display on the next page after input of a blank line.

♦ At the end of the series of rows retrieved by GO, the ***END***
prompt is issued.

♦ “For number-of-records” is not recommended for online use because
it does not pause until the last screen.

♦ GO always looks ahead one record so it can determine whether to
display the ***MORE*** or ***END*** message. It can be confusing if
you issue a GET after the GO because a record might appear to
have been skipped.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

70 P25-0240-49

Examples

♦ The command GO VIEW START AT VIEW-MARK1 USING (VIEW-
KEY-VALUE) issues the following sequence of RDM GET commands
until a not-found FSI is returned:

 GET VIEW AT VIEW-MARK1

 GET NEXT VIEW USING (VIEW-KEY-VALUE)

 GET NEXT VIEW USING (VIEW-KEY-VALUE)

 .

 .

 .

♦ The command GO PRIOR VIEW START LAST FROM (VIEW-KEY-
VALUE) issues the following sequence of RDM GET commands until
a not-found FSI is returned:

 GET LAST VIEW USING (VIEW-KEY-VALUE)

 GET PRIOR VIEW

 GET PRIOR VIEW

 .

 .

 .

GO command

Programming Guide 71

INSERT command
Use INSERT to issue an RDM INSERT request. The INSERT places a
view record in the physical database based on the relative location
specified.

[]INSERT

NEXT
LAST
FIRST
PRIOR

 MASS





















−view name

NEXT
LAST
FIRST
PRIOR





















Description Optional. Specifies where the record will be inserted in relation to
existing rows. The Access Set Description (ASD) may override this
specification.

Default NEXT If not positioned in the view, NEXT defaults to LAST, and
PRIOR defaults to FIRST.

Considerations For nonuniquely keyed values:

♦ INSERT FIRST. Places a row in the first position in the view.

♦ INSERT NEXT. Places a row after the current row. If no current
position exists, the row is placed in the last position in the view.

♦ INSERT PRIOR. Places a row before the current row. If no current
position exists, the row is placed in the first position in the view.

♦ INSERT LAST. Places a row in the last position of the view.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

72 P25-0240-49

view-name

Description Required. Names the valid, opened view in which you want the rows
inserted.

Considerations
♦ Entering * instead of a view-name causes DBAID to substitute the

last view-name used.

♦ After you enter the column values, the row is displayed. The
message INSERT (Y/N) displays, and you must respond accordingly.

MASS

Description Optional. Inserts many rows.

Considerations
♦ The positioning parameter you specify is used by RDM on every

INSERT command issued by mass insert.

♦ Input logical records immediately following this command after the
prompts MASS INSERT PROCESSING INITIATED and ENTER
END. TO EXIT MASS INSERT.

♦ Records are inserted as flat records. Separate the columns with
commas. Insert rows longer than one line by terminating the list of
values with a comma.

♦ If columns have no values, enter two consecutive commas to indicate
their absence. This value is treated as a null value for packed or
zoned items, as a large number for binary items, and as blanks for
character items.

♦ If columns contain single quotes (apostrophes), replace them with
two single quotes (not double quotes) and enclose the entire string in
single quotes. If columns contain spaces, enclose the entire string in
single quotes.

♦ Specify END. after you have input all rows to be inserted into the
view.

♦ To place multiple records on a single line, leave a blank between
rows. Do not specify the view name while doing a mass insert.

♦ Processing stops if 10 errors are detected while using MASS insert;
otherwise, enter END. to terminate inserting.

INSERT command

Programming Guide 73

General considerations

♦ If you use INSERT without MASS, SUPRA Server prompts you for
values even if the view does not allow inserts.

♦ Quotes may be used to include blanks in character strings.

Examples The following examples use INSERT in an online environment. The
fields after the > prompt indicates user input.

♦ This example inserts a view record in the physical database:
 >INSERT *

 NUMBER

 >9998

 PRODUCT

 >AAAA

 INSTALLED

 >100883

 NUMBER () 9998

 PRODUCT () AAAA

 INSTALLED () 100883

 INSERT (Y/N)?

 >Y

 FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

Chapter 3 Using the DBAID Utility subset to test views (VMS)

74 P25-0240-49

♦ These examples use MASS to insert one or more rows without
reference to column names. You use a blank to indicate the end of
an inserted row. You can also enter one or more records per line,
using a comma to carry part of a record to the next line. You use
END. to stop mass inserting:

a.
 >INSERT + MASS

 MASS INSERT PROCESSING INITIATED.

 ENTER "END." TO EXIT MASS INSERT.

 >9997,BBBB,100783

 FSI: * VSI + MSG: SUCCESSFUL COMPLETION

b.
 >9996,CCCC,

 >100683

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 <9995,DDDD,100583,9994,EEEE,100483 9993,FFFF,100383

 FSI * VIS: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 >END.

 MASS INSERT PROCESSING COMPLETED.

♦ This example shows an insert to an RMS data set:
 INSERT CUST-ORDER-PROD-VIEW

♦ In this RMS example, the following view is used with INSERT. An
insert is attempted on each file. If at least one record is inserted, the
operation is successful.

 NAME: CUST-ORDER-PROD-VIEW

 KEY CUST-NO

 CUST-NAME

 KEY ORDR-NO

 KEY ORDR-PROD-NO

 PROD-DESC

 ACCESS CUST USING CUST-NO ALLOW ALL

 ACCESS ORDR USING (CUST-NO, ORDR-NO, ORDR-PROD-NO) ALLOW ALL

 ACCESS PROD USING ORDR-PROD-NO ALLOW ALL

INSERT command

Programming Guide 75

♦ This RMS example shows how to prohibit an insert on a particular
view by not coding INS or ALL on the ALLOW clause. In this
example, whether or not the PROD record exists, the ORDR record
is not inserted. If the record exists, a message indicating that an
invalid value is in a required field appears, and an ASI of V is
returned on the key fields:

 NAME: CUST-ORDER-VIEW

 KEY CUST-NO

 CUST-NAME

 KEY ORDR-NO

 KEY ORDR-PROD-NO

 ACCESS CUST USING CUST-NO ALLOW ALL

 ACCESS ORDR USING (CUST-NO, ORDR-NO, ORDR-PROD-NO) ALLOW ALL

 ACCESS PROD USING ORDR-PROD-NO ALLOW DEL

Chapter 3 Using the DBAID Utility subset to test views (VMS)

76 P25-0240-49

KEEP command
Use KEEP to disable the DBAID automatic RESET facility. This
command is the opposite of ERASE. KEEP prohibits DBAID from issuing
a RESET when it receives an X FSI from the view. Instead, DBAID
“keeps” the database as it is and allows the user to decide whether to
RESET or not. This is the default setting.

KEEP

KEEP command

Programming Guide 77

LINESIZE command
Use LINESIZE to display the number of characters in a line or the current
line-size setting.

LINESIZE [number-of-characters]

number-of-characters

Description Optional. Indicates the number of characters to be displayed on a line.

Default 77

Options 11–256

Consideration If you omit the number-of-characters, the command displays the current
LINESIZE setting.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

78 P25-0240-49

MARK command
Use MARK to mark the current position of the view record established by
the previous GET.

MARK view-name AT mark-name

view-name

Description Required. Identifies the view-name established by the previous GET.

Format Must be a valid and opened view.

Consideration Entering * instead of a view-name causes DBAID to substitute the last
view-name used.

AT mark-name

Description Required. Names the location where the position of the current view will
be marked.

Format 1–30 alphanumeric characters.

Consideration You use this name in a later GET AT request to retrieve this view record.

General considerations

♦ The AT clause in GET repositions the view at the position set by the
MARK.

♦ You may create any number of marks for a logical user view, but to
conserve space, reuse MARKs when possible.

Example This example marks the current position of the view record:
>MARK CUSTOMER AT REMEMBER-CUSTOMER

You can do other GETs on CUSTOMER and return to this mark
immediately.

MARK command

Programming Guide 79

MARKS command
Use MARKS to list all open MARKs and the views they are marking.

MARKS

Example This example lists all open marks and the views (CUST-PROD) they are
marking:
>MARKS

 MARK NAME VIEW NAME

MARK6 CUST-PROD

MARK5 CUST-PROD

MARK4 CUST-PROD

MARK3 CUST-PROD

Chapter 3 Using the DBAID Utility subset to test views (VMS)

80 P25-0240-49

OPEN command
Use OPEN to ready a saved or virtual view for use by DBAID.

OPEN [user-view-name=]view-name[column1,...,columnn]

user-view-name=

Description Optional. Gives an existing view a name to be used in DBAID.

Format 1–30 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If user-view-name is not specified, the view-name is used.

♦ Use this command with the column parameter to create many
smaller views from one common view.

♦ To OPEN a view that has not been listed or defined in the same
session of DBAID, the user must be related to the view in the
Directory.

view-name

Description Required. Names the virtual or stored view to be readied for use.

Format Must be a valid view.

Considerations

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

♦ If you have Access or Privileged Database Administrator authority ,
you may use LIST to list any view before you open it. This makes the
text of the view known to DBAID. Such a view is called a virtual view.
Issuing OPEN on a view without first issuing a LIST causes RDM to
directly open the view before making text available to DBAID. Refer
to the SUPRA Server PDM Database Administration Guide (UNIX &
VMS), P25-2260, for information on LIST.

OPEN command

Programming Guide 81

column1,...,columnn

Description Optional. Identifies the column(s) to be included in the user view.

Format The columns must already be a part of the view being opened.

Considerations

♦ You may continue the list of column names on successive lines by
ending the current line with a comma. This will be necessary if the
current line size is less than the space required to enter all of the
data items in the row.

♦ USER-LIST displays the list of columns used to open the view (see
“USER-LIST command” on page 98).

General consideration

 OPEN returns information about the storage used in the message:
nnnnn BYTES USED IN OPENING VIEW

 where nnnnn is the amount of storage used by the view.

Example This example opens the user view CP-ONLY. The view comprises a
subset of all of the columns in CUST-PROD:
>OPEN CP-ONLY = CUST-PROD CUST-NO,PROD-NO

Only CUST-NO and PROD-NO are returned by GET CP-ONLY, even
though CUST-PROD has six defined columns.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

82 P25-0240-49

PAGESIZE command
Use PAGESIZE to specify the number of lines to be displayed on a
screen/page or to display the current page-size setting.

PAGESIZE [number-of-lines]

number-of-lines

Description Optional. Indicates the number of lines to be displayed on a
screen/page.

Format Two or more numeric characters greater than 10.

Consideration If you omit number-of-lines, the command displays the current page-size
setting.

General consideration

 The initial page size is 24 lines.

PAGESIZE command

Programming Guide 83

PRINT-STATS command
Use PRINT-STATS to cause RDM to print logical and physical statistics
such as the number of GETs, INSERTs, and DELETEs done on a view.
You may issue the command numerous times during a session after you
have first issued STATS-ON.

PRINT-STATS

General considerations

♦ STATS-ON must precede the first PRINT-STATS; if you do not first
issue STATS-ON, PRINT-STATS has no effect.

♦ You may issue STATS-OFF to discontinue statistics gathering. BYE
and SIGN-OFF print statistics and then turn off statistics gathering.

♦ Use PRINT-STATS to keep a statistical running total.

Example In the following example, PRINT-STATS prints statistics after each
RDML operation:
STATS-ON

GET NEXT CUST-PROD

 .

 .

PRINT-STATS

UPDATE CUST-PROD

 .

 .

PRINT-STATS

Chapter 3 Using the DBAID Utility subset to test views (VMS)

84 P25-0240-49

RELEASE command
Use RELEASE to issue an RDM RELEASE command that closes a
specific view or all opened views and releases the occupied storage.

RELEASE [view-name]

view-name

Description Optional. Names the valid, opened view to be released.

Considerations

♦ Entering * instead of view-name causes DBAID to substitute the last
view-name used.

♦ If you omit this parameter, all of your opened views are released.

General considerations

♦ The definition of any view is retained, allowing subsequent retrieval
and processing.

♦ This command does not affect virtual view text of the view(s).

RELEASE command

Programming Guide 85

RESET command
Use RESET to issue an RDM RESET request. A RESET rolls back any
database updates for the current user since the last COMMIT.

RESET

General considerations

♦ Only use RESET after unsuccessful updates. DBAID issues a
COMMIT after every successful update.

♦ DBAID does not automatically issue a RESET when an X FSI is
returned.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

86 P25-0240-49

SHOW-NAVIGATION command
Use SHOW-NAVIGATION to verify the accuracy of the access paths
used by RDM to access the underlying entities during a view open.

SHOW-NAVIGATION [view-name]

view-name

Description Optional. Names the valid, opened view for which you wish to display
details of access paths used.

Considerations

♦ Entering * instead of view-name causes DBAID to return information
on the view-name used most recently.

♦ If you omit the view-name parameter, RDM returns information on all
opened views in turn.

Example The following example shows the access path using the view REGION-
BY-NAME. REGION-BY-NAME is a base view because it accesses a
data set, REGN, through the secondary index key REGNSKNM.
>SHOW-NAVIGATION REGION-BY-NAME

SHOW-NAVIGATION command

Programming Guide 87

SIGN-OFF command
Use SIGN-OFF to sign off from DBAID.

SIGN-OFF

General consideration

 Use SIGN-OFF to remove yourself as a user without terminating DBAID.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

88 P25-0240-49

SIGN-ON command
Use SIGN-ON to identify yourself to DBAID.

SIGN-ON username [password]

username

Description Required. Names the user.

Format 1–30 alphanumeric characters. Must be a valid user name already
defined on the Directory.

password

Description Conditional. Required if a password is associated with the user name.
However, if no password is associated with it, then press RETURN after
the password prompt.

Format 1–8 alphanumeric characters. Must be a valid password already defined
on the Directory.

General consideration

 A SIGN-ON is done on entry to DBAID.

Example This example identifies Jane Doe to DBAID:
>SIGN-ON JDOE DBAPSWD

SIGN-ON command

Programming Guide 89

STATS command
Use STATS to cause RDM to display the current statistics for all open
views or for a view that you specify.

STATS [view-name]

view-name

Description Optional. Names the valid, opened view for which you wish to display
statistics.

Consideration Entering an * instead of a view-name causes DBAID to substitute the last
view-name used.

General considerations

♦ STATS-ON must precede the first STATS; if you do not first issue
STATS-ON, STATS has no effect.

♦ You may issue a STATS-OFF to discontinue statistics gathering.

♦ When you issue STATS, the statistics are displayed on your screen.

♦ You may issue STATS-OFF followed by STATS-ON, or just STATS-
ON to reset the statistical information.

♦ Use STATS to keep a statistical running total.

Example The following example uses STATS to display a running total after each
RDML operation:
STATS-ON

GET NEXT REVIEW-DETAILS

 .

 .

 .

STATS

UPDATE REVIEW-DETAILS

 .

 .

STATS

Chapter 3 Using the DBAID Utility subset to test views (VMS)

90 P25-0240-49

STATS-OFF command
Use STATS-OFF to cause RDM to print the current statistics. After RDM
prints the statistics, it displays them.

STATS-OFF

General considerations

♦ STATS-ON must precede STATS-OFF.

♦ Issuing STATS-OFF without a preceding STATS-ON has no effect.

♦ BYE or SIGN-OFF will also perform a STATS-OFF.

STATS-OFF command

Programming Guide 91

STATS-ON command
Use STATS-ON to cause RDM to initialize the statistics to 0 and then
begin gathering statistics. The DBA can use this command, together with
STATS-OFF or PRINT-STATS, to examine what user views do on both
logical and physical levels.

STATS-ON

General considerations

♦ Statistics are gathered on a task basis, not on a systemwide basis.

♦ Use STATS-OFF to print statistics and then turn them off.

♦ Use PRINT-STATS to print statistics but continue gathering a running
total.

♦ You can use BYE and SIGN-OFF to print statistics and then turn
them off.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

92 P25-0240-49

SURE command
Use SURE to cause a COMMIT after each successful INSERT,
UPDATE, or DELETE. SURE is the opposite of CAUTIOUS and will
cause RDM to automatically issue a COMMIT if an * FSI is returned by a
RDML command that alters the database. SURE is the default setting.

SURE

SURE command

Programming Guide 93

UNDEFINE command
Use UNDEFINE to remove the name and definition of a virtual view.

UNDEFINE
ALL
view name−









ALL

view-name

Description Required. Specifies which virtual views to remove.

Options ALL Removes all virtual views currently in use and issues an
RDM RELEASE.

view-name Identifies the virtual view to be removed. This must be a
valid view.

Consideration Entering * instead of view-name causes DBAID to substitute the last
view-name used.

General considerations

♦ The view relinquishes the storage, allowing it to be reclaimed for
defining other views.

♦ This command does not remove a saved definition from the
Directory.

Examples

♦ This example removes all views currently in use:
 >UNDEFINE ALL

♦ This example removes the view CUSTOMER:
 >UNDEFINE CUSTOMER

Chapter 3 Using the DBAID Utility subset to test views (VMS)

94 P25-0240-49

UPDATE command
Use UPDATE to update data values in the database. For RMS data sets,
it also updates the relationships between files.

UPDATE view-name

 [column1:=literal1[,...,columnn:=literaln]]

view-name

Description Required. Names the valid, opened view you wish to update.

Consideration Entering an * instead of a view-name causes DBAID to substitute the last
view-name used.

UPDATE command

Programming Guide 95

column1:=literal1[,...,columnn:=literaln]

Description Optional. Identifies a column in the view which is to have the value of the
literal.

Format column The column must already be part of the view being
updated.

:= Must be coded as shown.

literal Character or numeric data. Hexadecimal value is not
allowed.

Considerations
♦ Each updateable column is displayed, and replacement values are

accepted. Entering a null line does not change the item; entering
new data changes the item value in the row. After all updateable
items are processed, the UPDATE (Y/N) prompt is displayed and
requires a response.

♦ You can use the column:=literal syntax when updating items in the
row. Only the items you specify are updated; all others remain the
same. To update a row, indicate the item you want to update, the :=,
and the new value for the item.

♦ Single quotes are not required around a character or numeric literal
unless the literal contains spaces or commas.

♦ Single quotes are required for you to change the value of a column to
blanks. A literal of spaces (keyed in) must be in single quotes. If you
press RETURN, you do not affect the item’s value.

♦ UPDATE cannot be used to modify columns designated as key
values. Use DELETE and INSERT to modify key items. See
“DELETE command” on page 53 and “INSERT command” on
page 72.

♦ To UPDATE a row, you must first retrieve the row using the GET
command.

♦ UPDATE cannot change all the values in a defined column to a
specific value. For example, you cannot change all PROD-CODES
to T100.

♦ If the physical field being updated is an alternate key for RMS data
sets, RDM maintains the secondary index in the same file as the
primary index.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

96 P25-0240-49

Examples

♦ This example updates the columns RENT and MAINT in the view
CUST-PROD:

 >UPDATE CUST-PROD RENT:=175.00, MAINT:=50.00

♦ This RMS example uses the following view with UPDATE to enter
customer, product, and date of sale information within the data set:

 NAME: ORDER-DATE-VIEW

 KEY ORDR-CUST-NO

 KEY ORDR-PROD-NO

 ORDR-DATE-OF-SALE

 ACCESS ORDR USING (ORDR-CUST-NO, ORDR-PROD-NO) ALLOW ALL

 ACCESS DATE USING ORDR-DATE-OF-SALE ALLOW ALL

 >GET ORDER-DATE-VIEW

 >UPDATE ORDER-DATE-VIEW ORDR-DATE-OF-SALE:=19NOV85

♦ If an alternate index is defined for the above view, RDM performs the
update as follows:

- Before the record is deleted in the DATE file, a check is made
through the alternate index to see if any records in the ORDR file
have the old value.

- If so, the delete is not performed on the DATE file. RDM then
attempts to insert the new value into the DATE file.

- If a duplicate occurrence is found, the error is ignored.

UPDATE command

Programming Guide 97

USER-LIST command
Use USER-LIST to display the attribute list for the user view named.

USER-LIST user-view-name

user-view-name

Description Required. Identifies the user view or view to be displayed.

Format Must be a valid user view.

Consideration Entering * instead of a user-view-name causes DBAID to substitute the
last user-view-name used.

Example This example displays the list of attributes for the PO-CODE-ONLY user
view:
>USER-LIST PO-CODE-ONLY

USER VIEW NAME : PO-CODE-ONLY

VIEW VIEW NAME : CUSTOMER-PURCHASE-ORDER

USER VIEW LIST :

CUST-NO,PURCHASE-ORDER-CODE,END.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

98 P25-0240-49

VIEW-DEFN command
Use VIEW-DEFN to display a condensed description of a view.

VIEW-DEFN [view-name]

view-name

Description Optional. Specifies the view whose condensed description is to be
displayed.

Format Must be a valid and opened view.

Considerations

♦ Entering * instead of a view-name causes DBAID to substitute the
last view-name used.

♦ If you omit this parameter, a condensed description of all your
opened views is displayed.

Example This example displays a condensed description of the CUSTOMER view.
The table following this example explains each displayed descriptor.
> VIEW-DEFN

VIEW-NAME (+) CUSTOMER

INS-ORDER (+) N

TOTAL-SIZE (+) 63

TOTAL-FIELDS (+) 3

TOTAL-LEVELS (+) 1

TOTAL-DELETABLE (+) 3

TOTAL-INSERTABLE (+) 3

TOTAL-REPLACABLE (+) 3

TOTAL-REQUIRED (+) 1

TOTAL-KEYS (+) 1

TOTAL-NONUNIQUE (+) 0

MORE

VIEW-DEFN command

Programming Guide 99

View descriptor Explanation
VIEW-NAME The name of the view being described.
INS-ORDER Indicates that inserts will be ordered,

depending on the value of a column.
TOTAL-SIZE The total number of bytes in the view,

including ASIs.
TOTAL-FIELDS The number of columns in the view.
TOTAL-LEVELS The number of levels in the view.
TOTAL-DELETABLE The number of deletable columns.
TOTAL-INSERTABLE The number of insertable columns.
TOTAL-REPLACEABLE The number of updateable columns.
TOTAL-REQUIRED The number of required columns.
TOTAL-KEYS The number of keys in the view.
TOTAL-NONUNIQUE The number of nonunique keys in the

view.

Chapter 3 Using the DBAID Utility subset to test views (VMS)

100 P25-0240-49

VIEWS command
Use VIEWS to display all of the views currently active in DBAID.

VIEWS

General consideration

 The information displayed with this command includes:

♦ User View. The name of the user view.

♦ View. The name of the view from which the user view is taken.

♦ Status. Indicates whether the user view is open or released.

Example This example displays all views currently active in DBAID:
>VIEWS

USER VIEW VIEW
STATUS

CUSTOMER-PURCHASE-ORDER CUSTOMER-PURCHASE-ORDER
OPENED

PO-CODE-ONLY CUSTOMER-PURCHASE-ORDER
OPENED

VIEWS command

Programming Guide 101

VIEWS-FOR-USER command
Use VIEWS-FOR-USER to list the views related to the signed-on user.

VIEWS-FOR-USER

Example This example displays the views related to the signed-on user:
VIEWS-FOR-USER

! LOGICAL VIEW NAME ! DATE ! TIME !

!------------------------------------!--------------!-----------!

! BASE-VIEW ! 03/03/95 ! 14:22:18 !

! REGION ! 03/03/95 ! 14:12:43 !

! BRANCH ! 04/05/95 ! 10:40:19 !

! CUSTOMER ! 03/03/95 ! 16:42:56 !

! PRODUCT ! 04/04/95 ! 10:40:29 !

! BRANCH-SUBSET ! 04/25/95 ! 16:39:40 !

! BRANCHES-IN-REGION ! 03/30/95 ! 14:33:38 !

! PRODUCTS-IN-REGION ! 03/30/95 ! 15:17:41 !

! REVIEW-DETAILS ! 03/31/95 ! 10:34:21 !

! WRITING-DETAILS ! 03/30/95 ! 15:14:29 !

! MANUALS ! 03/30/95 ! 15:16:05 !

! AUTHOR ! 03/30/95 ! 15:16:36 !

! PRODUCTION-DETAILS ! 03/30/95 ! 15:17:23 !

!------------------------------------!--------------!-----------!

Chapter 3 Using the DBAID Utility subset to test views (VMS)

102 P25-0240-49

4
Writing an RDM program in COBOL,
FORTRAN, and BASIC (VMS)

Use the information in this chapter to write RDM programs in COBOL,
FORTRAN, and BASIC. The statements (and their associated optional
phrases) presented here and in “Coding RDM program statements
(VMS)” on page 153 are written as part of the source language. The
RDML preprocessor converts the RDML statements into the correct set
of MOVEs and CALLs to the RDM processor. Each RDML statement
must start on a line by itself.

Understanding RDML statement format
The following are format considerations for RDML statements:

COBOL

♦ You may use either ANSI or terminal format COBOL.

♦ Use dashes, not underscores, when coding data names. The
COBOL preprocessor does not accept underscores.

♦ End each statement with a period.

 Programming Guide 103

FORTRAN and BASIC

♦ Do not use a period at the end of any RDML statements.

♦ Remember that any comment line is also a comment for the
preprocessor. End of line comments are permitted in RDML source
wherever they are permitted in FORTRAN or BASIC. In FORTRAN,
these comments are preceded by a C; in BASIC, by an exclamation
point (!).

♦ If you need to extend an RDML statement over several source lines,
then use the FORTRAN or BASIC system for continuation lines.
Characters after column 72 are ignored.

♦ In FORTRAN, the preprocessor includes debug lines when counting
the number of statements in the output file.

♦ In BASIC, all preprocessor statements are preceded by the keyword
RDM, except for DUP KEY, NOT FOUND, and
END ERROR-HANDLER. For compatibility with ULTRA 1.4, you
may also use the keyword LUV.

♦ Do not use the following words as user view names because they
conflict with the syntax of the INCLUDE and the various ACCESS
statements: COMMON, FIRST, LAST, PRIOR, NEXT, SAME, and
ALL. If you use these words, you will get compile errors.

♦ Use hyphens and underscores as follows:

- FORTRAN. All names defined on the Directory are stored in
COBOL format; hyphens are allowed, as well as alphanumerics.
FORTRAN allows only underscores and the dollar sign ($), as
well as alphanumerics. The two systems are reconciled by
replacing hyphens with underscores when conversion to
FORTRAN is required. The preprocessor replaces both
underscores and dollar signs with hyphens when the reverse
transformation is required.

- BASIC . Names defined on the Directory can contain hyphens.
To refer to such a name in your program, code an underscore
instead of a hyphen.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

104 P25-0240-49

♦ If you are using FORTRAN, you must use FORTRAN format names
within FORTRAN RDML statements with the exception of the
INCLUDE statement. In the INCLUDE statement, you can use either
FORTRAN or COBOL format names, because the INCLUDE
statement is regarded as the interface between the Directory and the
FORTRAN compiler.

♦ If you are using BASIC, do not embed RDM statements in other
statements. These two examples are invalid:
IF I=1 THEN RDM INSERT V1

RDM INSERT V1 UNLESS I < > 1

 In addition, they must be separated from other statements by new
lines or by a /. For example:
IF I=1 THEN / RDM INSERT / END IF

 The lines in the program file must be in sequential order (all line
numbers in the file must be in order).

The following three tables give the valid combinations of data type,
length, and decimal places for COBOL, FORTRAN, and BASIC data
items. Note that some combinations valid for COBOL are invalid for
FORTRAN.

When using the information in the Description Column, consider the
following:

♦ Length of the data item (L)

♦ Number of decimal places (D)

♦ Total number of digits, both before and after the decimal point (B)

Understanding RDML statement format

Programming Guide 105

In addition, an X in the Signed/Unsigned column means it is irrelevant.

Data type

Signed /
Unsigned

Length

Decimal
places

COBOL description

Character X 1–9999 0 PIC X(L)
Binary S 1 0 PIC X
Binary U 1 0 PIC X
Binary S 2 0 PIC S9(4) COMP
Binary U 2 0 PIC 9(4) COMP
Binary S 4 0 PIC S9(9) COMP
Binary U 4 0 PIC 9(9) COMP
Binary S 8 0 PIC S9(18) COMP
Binary U 8 0 PIC 9(18) COMP
Binary S 2 1–4 PIC S9(B)V9(D) COMP
Binary U 2 1–4 PIC 9(B)V9(D) COMP
Binary S 4 1–9 PIC S9(B)V9(D) COMP
Binary U 4 1–9 PIC 9(B)V9(D) COMP
Binary S 8 1–18 PIC S9(B)V9(D) COMP
Binary U 8 1–18 PIC 9(B)V9(D) COMP
Numeric S 1–18 0 PIC S9(B)
Numeric U 1–18 0 PIC 9(B)
Numeric S 1–18 1-L PIC S9(B)V9(D)
Numeric U 1–18 1-L PIC 9(B)V9(D)
Packed
decimal

S 1–10 0 PIC 9(L) COMP-3

Packed
decimal

S 1–10 1 to (2L-1) PIC 9(B)V9(D) COMP-3

Floating point S 4 0 COMP-1
Floating point S 8 0 COMP-2

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

106 P25-0240-49

Data type

Signed /
Unsigned

Length

Decimal
places

FORTRAN description

Character 1–9999 0 CHARACTER*L
Binary S/U 2 0 INTEGER*2
Binary S/U 4 0 INTEGER*4
Floating point S/U 4 0 REAL
Floating point S/U 8 0 DOUBLE PRECISION

Data type

Signed /
Unsigned

Length

Decimal
places

BASIC description

Character X 1–9999 0 STRINGX=L
Binary S/U 1 0 BYTE
Binary S/U 2 0 WORD
Binary S/U 4 0 LONG
Packed
decimal

S 1–10 0 DECIMAL (B,D)

Packed
decimal

S 1–10 1 to (2L-1) DECIMAL (B,D)

Floating point S 4 0 SINGLE
Floating point S 8 0 DOUBLE

Understanding RDML statement format

Programming Guide 107

Enrolling your program in the SUPRA directory
Use the following information to enroll your program in the SUPRA
Directory.

Writing the identification division (COBOL)
Write the identification division as you would for any COBOL program, for
example:
IDENTIFICATION DIVISION.

PROGRAM-ID. LVPROG.

Include the program name since it is used to enroll the program on the
Directory.

Writing the program naming statement (FORTRAN and BASIC)
In FORTRAN, write the Program Naming statement as you would write it
for any program. For example:
PROGRAM LVDEMO

This statement is optional in VAX FORTRAN; however, it must be
included in a program using RDML so that the SUPRA Directory can
enroll your program.

In BASIC, write the Program Naming statement as follows:
RDM PROGRAM LVDEMO

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

108 P25-0240-49

Defining program data
When you define program data, you describe the information that your
program will process. This includes specifying the input/output records
and their data files. It also includes:

♦ Specifying views, user views, and ULT-CONTROL

♦ Validating your data by checking status indicators

♦ Specifying how RDM checks that you are using a current program

Writing the environment division (COBOL)
If you are using COBOL, first write the environment division as you would
for any COBOL program, for example:
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT INPUT-FILE ASSIGN TO READER.

 SELECT OUTPUT-FILE ASSIGN TO DISK.

The FILE-CONTROL statements are required only if your program will be
using files other than PDM data sets.

Defining program data

Programming Guide 109

Writing the Data Division (COBOL) and the Declaration
Statements (FORTRAN and BASIC)

Using the COBOL Data Division or the FORTRAN and BASIC
Declaration Statements, you specify views, user views and a special view
called ULT-CONTROL; validate your data by checking status indicators;
and define how RDM checks that you are using a current program.

Specifying views and user views
You can use a view that is already established or create your own view.

To use a view that your DBA established, code an INCLUDE with the
name of the view. For example:

♦ COBOL
01 INCLUDE PART-COMP.

♦ FORTRAN
PROGRAM LVDEMO

 INCLUDE PART-COMP

♦ BASIC
RDM PROGRAM LVDEMO

 RDM INCLUDE PART-COMP

You may create your own user view by selecting columns from a view. To
create a user view, code an INCLUDE with the name of the subset of the
view, the name of the view, and the columns you want to include in the
view. For example:

♦ COBOL
01 V2 INCLUDE PART-COMP (PART=PART-NAME,COMP=COMPONENT-NAME)

♦ FORTRAN
INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

♦ BASIC
RDM INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

110 P25-0240-49

If you create your own user view by identifying subsets of columns, RDM
carries out the validation that has been defined for the complete view
(you cannot change the effect of required columns in terms of their being
available for inserts). For example, if an INSERT is executed and a
column is required for the addition of that row, but the column is not
defined in your subset, RDM rejects the INSERT. You can also modify
the order of columns in a view. However, if you reorder logical keys in a
view, you may inadvertently force RDM to read many rows from the view
to satisfy the GET if you did not specify a physical key value. For each
INCLUDE, the RDM preprocessor generates associated record and
status data areas. The record data area specifies where data for each
included view is placed in the program. The status data area directly
corresponds to the columns in the record data area. It also contains
1 byte of information indicating whether the data is valid, has changed
since your most recent access, or is missing (see “Validating data” on
page 115).

The preprocessor changes RDML statements into comments. These
comments are preceded by an asterisk (*) in COBOL, a C in FORTRAN,
and an exclamation point (!) in BASIC. At this point, the expanded version
of the program is ready for compiling, as illustrated below.

Never change the expanded (precompiled) code; only change the code
before it is precompiled.

COBOL
*01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).

 01 LUV-CUSTOMER.

 10 CUSTOMER.

 20 CUST-NO PIC X(006).

 20 NAME PIC X(020).

 20 CITY PIC X(015).

 10 ASI-CUSTOMER.

 20 ASI-CUST-NO PIC X.

 20 ASI-NAME PIC X.

 20 ASI-CITY PIC X.

Defining program data

Programming Guide 111

FORTRAN
C INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

 CHARACTER*6 PART

 CHARACTER*6 COMP

 CHARACTER*1 ASI_PART,ASI_COMP

 EQUIVALENCE (PART,PART_COMP(1:6))

 EQUIVALENCE (COMP,PART_COMP(7:12))

 EQUIVALENCE (ASI_PART,PART_COMP(13:13))

 EQUIVALENCE (ASI_COMP,PART_COMP(14:14))

 INTEGER*4 PART_COMP_LEN

 PARAMETER(PART_COMP_LEN=14)

 CHARACTER*(PART_COMP_LEN)PART_COMP

 CHARACTER ULT$PART_COMP*30,ULT$PART*17,ULT$COMP*22,ULT_END_VIEW1*4

 DATA ULT$PART_COMP/'V2 /ULT$PART

 +/'006C00PART-NAME,'/ULT$COMP/'006C00COMPONENT-NAME,/ULT_END_VIEW

 +1/'END.'/

 CHARACTER *73 ULT$1

 EQUIVALENCE (ULT$1,ULT$PART_COMP),(ULT$1(31:47),ULT$PART),

 +(ULT$1(48:69),ULT$COMP),(ULT$1(70:73),ULT_END_VIEW1)

 +

BASIC
! RDM INCLUDE FRED=TEST6D(F1=CUST-ORDER-NO,F2=CUST-ORDER-DATE)

RECORD FRED_REC

STRING F1=6,STRING F2=9

STRING ASI_F1 = 1,ASI_F2 = 1

END RECORD

DECLARE FRED_REC FRED

DECLARE STRING CONSTANT FRED_ULT ='TEST6D '+

"006C00CUST-ORDER-NO,"+"009C00CUST-ORDER-DATE,"+"END."

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

112 P25-0240-49

Specifying ULT-CONTROL
Include the special view ULT-CONTROL in each program issuing an
RDML request. ULT-CONTROL contains operation, status, and other
control-oriented information required to control access to all views. It
passes parameters between the application and the RDM.

When you specify an INCLUDE for ULT-CONTROL, RDM generates the
following:

COBOL
*01 INCLUDE ULT-CONTROL.

 01 ULT-CONTROL.

 10 ULT-OBJECT-NAME PIC X(30).

 10 ULT-OPERATION.

 20 ULT-ID PIC X(2).

 20 ULT-OPCODE PIC X.

 20 ULT-POSITION PIC X.

 20 ULT-MODE PIC X.

 20 ULT-KEYS PIC X.

 10 ULT-FSI PIC X.

 10 ULT-VSI PIC X.

 10 FILLER PIC X(2).

 10 ULT-MESSAGE PIC X(40).

 10 ULT-PASSWORD PIC X(8).

 10 ULT-OPTIONS PIC X(4).

 10 ULT-CONTEXT PIC X(4).

 10 ULT-LVCONTEXT PIC X(4).

You can use an INCLUDE in either the Working-Storage or Linkage
Section.

Defining program data

Programming Guide 113

FORTRAN
C INCLUDE ULT-CONTROL

 CHARACTER
ULT_OBJECT_NAME*30,ULT_OPERATION*6,ULT_FSI*1,ULT_VSI*1,

 +ULT_FILLER*2,ULT_MESSAGE*40,ULT_PASSWORD*8,ULT_OPTIONS*4,

 +ULT_CONTEXT*4,ULT_LVCONTEXT*4

 PARAMETER(ULT_CONTROL_LEN=100)

 CHARACTER*(ULT_CONTROL_LEN) ULT_CONTROL

 EQUIVALENCE (ULT_CONTROL(1:30),ULT_OBJECT_NAME(1:30)),

 +(ULT_CONTROL(31:36),ULT_OPERATION(1:6)),(ULT_CONTROL(37:37),

 +ULT_FSI(1:1)),(ULT_CONTROL(38:38),ULT_VSI(1:1)),

 +(ULT_CONTROL(39:40),ULT_FILLER(1:2)),(ULT_CONTROL(41:80),

 +ULT_MESSAGE(1:40)),(ULT_CONTROL(81:88),ULT_PASSWORD(1:8)),

 +(ULT_CONTROL(89:92),ULT_OPTIONS(1:4)),(ULT_CONTROL(93:96),

 +ULT_CONTEXT(1:4)),(ULT_CONTROL(97:100),ULT_LVCONTEXT(1:4))

 CHARACTER*14 ULT_DATE_STAMP

 DATA ULT_DATA_STAMP/'19831114143849'/

C ON ERROR

C TYPE *,'RDM control call failed',ULT_FSI

C STOP

C END ERROR-HANDLER

C

BASIC
! RDM INCLUDE ULT-CONTROL

RECORD ULT_CONTROL_REC

STRING ULT_OBJECT_NAME = 30, ULT_OPERATION = 6,

 ULT_FSI = 1,ULT_VSI = 1, ULT_FILLER = 2,ULT_MESSAGE = 40,

 ULT_PASSWORD = 8, ULT_OPTIONS = 4,ULT_CONTEXT = 4, ULT_LVCONTEXT
= 4

END RECORD

DECLARE ULT_CONTROL_REC ULT_CONTROL

EXTERNAL SUB CSVIPLVS, CSVBERROR

DECLARE STRING CONSTANT ULT_DATE_STAMP = "19840830161953"

! RDM ON ERROR

! GOTO 99

! END ERROR-HANDLER

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

114 P25-0240-49

Validating data
The DBA’s choice of data type for a column restricts the values you can
insert into the database. When you run a program, RDM rejects invalid
values.

RDM returns three kinds of status indicators to the application program to
indicate RDML processing results.

♦ FSI (Function Status Indicator). Indicates the success or failure of
the function and is returned after any RDML function call.

♦ ASI (Attribute (Column) Status Indicator). Indicates the status of
each column in the row and is returned after a DELETE, INSERT,
GET, or UPDATE RDML function call.

♦ VSI (Validity Status Indicator). Indicates the validity of the user
view row returned by your last RDML request and is returned after a
DELETE, INSERT, GET, or UPDATE RDML function call.

Defining program data

Programming Guide 115

Function Status Indicators

Function Status Indicators (FSI) reflect the success or failure of your
RDML request. RDM obtains the 1-character field (ULT-FSI) from ULT-
CONTROL and provides an associated message in ULT-CONTROL’s
message area (see the example in “Specifying ULT-CONTROL” on
page 113). The RDML processor returns only one FSI for any RDML
function. FSIs have the following meanings:

FSI value Meaning
* Successful.
D Data error. Row contains invalid or changed data

(VSI=C). Check the ASI to find the column(s)
containing the invalid value.

F Fail. Indicates a major error. Something may be wrong
with the database, or you might have attempted to
perform an invalid function on the user view.

N Fail due to occurrence problem. This may be because
of a GET not found or an INSERT duplicate found.

R DYNAMIC RESET. The PDM has performed a dynamic
reset on the database because of an earlier PDM
failure. The PDM has restarted automatically, so you
must reapply all modifications made since the last
COMIT.

S Security. Verify the RDML function and correct if
necessary.

U Unavailable resources. The resource required to
complete this function was not available; retry at a later
time.

X RDML function modifications were made to the
database before the error condition was detected.
Issue a RESET to restore the database. This code
overrides D, F, S, or U indicators.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

116 P25-0240-49

Attribute (Column) Status Indicators

Attribute (Column) Status Indicators (ASI) reflect the status of each
column in your view. The RDML processor returns one ASI for each
column in the user view and places it in the ASI element-name fields
defined for you by the RDML preprocessor.

Use ASIs to:

♦ Determine which columns have null values or which have been
changed since the most recent access through the current view.

♦ Find which columns have invalid values if your program receives an
FSI indicating a data error.

♦ (COBOL only) Avoid run-time errors when your program uses a view
which has packed values. Run-time errors are caused if your
program performs a calculation or move using an invalid packed
decimal value. Examine each ASI before performing a move or
calculation, taking note of the following points:

- If the ASI is V, the value is placed in the row even though it is not
in a valid format.

- If the ASI is -, the column value is a valid 0 value for numeric
columns or the column value is spaces for character columns.

- For other ASI values, the column is valid.

♦ Request RDM to set a column to its null value on INSERTS and
UPDATES.

You may access the ASIs through names generated by the RDML
compiler. You must code an INCLUDE for the user view in your program.
The RDML preprocessor generates:

♦ A statement for each column included in the user view row.

♦ A column for each ASI by preceding the name of each column in the
view with the characters ASI- (COBOL) or ASI_ (FORTRAN and
BASIC). The RDML preprocessor truncates any trailing characters in
a column name with over 26 characters.

Defining program data

Programming Guide 117

The following are examples of this generation:

The ASIs are defined after the last column in the user view.

COBOL The asterisk indicates the statement you code. The RDML compiler
generates all other statements.
*01 PROD1 INCLUDE PRODUCT.

 01 LUV-PROD1.

 10 PROD1.

 20 PROD-NO PIC X(004).

 20 PROD-DESC PIC X(040).

 10 ASI-PROD1.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

FORTRAN The C indicates the statement you code. The RDML compiler generates
all other statements.

C INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

 CHARACTER*6 PART

 CHARACTER*6 COMP

 CHARACTER*1 ASI_PART,ASI_COMP

 EQUIVALENCE (PART,PART_COMP(1:6))

 EQUIVALENCE (COMP,PART_COMP(7:12))

 EQUIVALENCE (ASI_PART,PART_COMP(13:13))

 EQUIVALENCE (ASI_COMP,PART_COMP(14:14))

 INTEGER*4 PART_COMP_LEN

 PARAMETER(PART_COMP_LEN=14)

 CHARACTER*(PART_COMP_LEN)PART_COMP

 CHARACTER ULT$PART_COMP*30,ULT$PART*17,ULT$COMP*22,ULT_END_VIEW1*4

 DATA ULT$PART_COMP/'V2 /ULT$PART

 +/'006C00PART-NAME,'/ULT$COMP/'006C00COMPONENT-NAME,/ULT_END_VIEW

 +1/'END.'/

 CHARACTER *73 ULT$1

 EQUIVALENCE (ULT$1,ULT$PART_COMP),(ULT$1(31:47),ULT$PART),

 +(ULT$1(48:69),ULT$COMP),(ULT$1(70:73),ULT_END_VIEW1)

 +

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

118 P25-0240-49

BASIC The ! indicates the statement you code. The RDML compiler generates
all other statements.

! RDM INCLUDE FRED=TEST6D(F1=CUST-ORDER-NO,F2=CUST-ORDER-DATE)

RECORD FRED_REC

STRING F1=6,STRING F2=9

STRING ASI_F1 = 1,ASI_F2 = 1

END RECORD

DECLARE FRED_REC FRED

DECLARE STRING CONSTANT FRED_ULT ='TEST6D '+

"006C00CUST-ORDER-NO,"+"009C00CUST-ORDER-DATE,"+"END."

ASIs have the following meanings:

ASI value Meaning
C The column value was changed by another view.
V The value of the column is not a valid value.
- The column is missing or has a null value.
+ The column exists but another task has changed it

since the most recent access.
= The column exists and has not been changed by

another task since the most recent access.
N You can place an N in the ASI during UPDATES and

INSERTS to set a column to its null value. RDM never
returns an ASI value of N.

Defining program data

Programming Guide 119

Validity Status Indicators

Validity Status Indicators (VSI) reflect the validity of the user view row
returned by your most recent RDML request. The RDML processor
returns the VSI to the program in an area generated as part of the
programmer-supplied INCLUDE ULT-CONTROL statement (see the
example in “Specifying ULT-CONTROL” on page 113).

You can use this indicator to determine the most significant ASI returned
by RDM according to the following hierarchy:

VSI value Meaning
C At least one column value was changed by another

view.
V At least one invalid ASI was returned.
- No invalid ASIs were returned, but at least one missing

ASI was returned.
+ No invalid or missing ASIs were returned, but at least

one column in the row has been changed by another
task.

= No invalid, missing, or new physical occurrences were
returned by this RDM function.

The VSI enables you to determine if any additional processing of ASIs is
needed to correct invalid data or to fill in missing values.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

120 P25-0240-49

Checking for current program
RDM keeps track of when columns change, when programs are
compiled, what versions are used, and whether or not they are still
compatible. When you execute an application program, RDM ensures
that the program is still executable according to the current Directory
definition. If the program is not current, RDM does not allow it to execute.

RDM checks to see if any columns in the view have been modified in the
SUPRA Directory, SUPRAD, since the most recent program compile. If
the DBA has made such a change, your program will receive the
message CURRENCY CHECK - PLEASE RECOMPILE and cannot
access the view until it has been recompiled. Changes which make
recompiling necessary are:

♦ Data type change (packed decimal to binary, etc.)

♦ Deleted column (if the column is not part of your user view, you do
not need to recompile)

♦ Column length change

♦ (COBOL only) Change in the number of decimal places

Defining program data

Programming Guide 121

Defining program logic
Write the procedure division (COBOL) and/or program logic statements
(FORTRAN and BASIC) so you can perform the following:

♦ Sign On/Off

♦ Retrieve Rows

♦ Modify Rows

♦ Control Database Recovery

♦ Handle Error Conditions

Signing on/off
Use SIGN-ON to establish communication between your program and
RDM. SIGN-ON must be the first RDML command that your program
executes. You must supply a user name and a password with the SIGN-
ON if your DBA assigned you a password on the Directory. At run time,
RDM checks the Directory to make sure the user name (and password, if
necessary) is valid. By calling the program CSV_SETUP_REALM prior to
sign-on, you may specify the mode in which each data set should be
opened. See the General considerations in “SIGN-ON” on page 205 for
details.

Use SIGN-OFF to terminate your session. RDM releases the storage
areas acquired. Issue a SIGN-OFF at the end of every application
program. See “SIGN-OFF” on page 202 for more information about
SIGN-OFF.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

122 P25-0240-49

Retrieving rows
Use GET to retrieve rows with or without keys. You can also retrieve
multiple rows and hold rows for subsequent UPDATE.

Retrieving rows without a key
Use GET to retrieve rows without a key. For example, by repeatedly
issuing the request, GET CUST-INFO (use an underscore if you are
using FORTRAN or BASIC), you can sequentially retrieve every row in
the CUST-INFO view. You can also use GET FIRST, GET NEXT, GET
PRIOR, GET LAST, and GET SAME to retrieve rows without a key.

If your DBA defines views without any logical keys for performing direct
reads, the USING phrase (which indicates what key values to access) is
invalid and causes an error.

Retrieving rows with keys
By specifying key values with the USING clause of GET you indicate the
values RDM should use to access the view. Each logical key value
restricts the set of rows that RDM retrieves from the view. If more than
one row satisfies the condition required by the specified logical key
values, you can use GET NEXT to retrieve occurrences after the first. For
example, the view ACCOUNT_DATA has two keys, CUSTOMER_NO
and ACCOUNT_NO. Together, they uniquely identify a row in the view.
The following statement retrieves the first row in the view, ACCOUNT-
DATA.

COBOL
GET FIRST ACCOUNT-DATA.

FORTRAN
GET FIRST ACCOUNT_DATA

BASIC
RDM GET FIRST ACCOUNT_DATA

GET NEXT retrieves the next row.

Defining program logic

Programming Guide 123

COBOL
GET NEXT ACCOUNT-DATA.

FORTRAN
GET NEXT ACCOUNT_DATA

BASIC
RDM GET NEXT ACCOUNT_DATA

GET NEXT retrieves the first row in a user view if no current position
exists (if you issue no other GETs). GET SAME retrieves the same row
as the previous GET; GET PRIOR retrieves the previous row; and GET
LAST retrieves the last row.

The effect of GET NEXT when using key values which differ from those
used in the previous GET NEXT is unpredictable. RDM may require a
database scan to find the row required. With GET NEXT, this scan is
performed relative to the current position; therefore, the key values
required may be missed because they lie at positions prior to the current
position. The result would be a NOT FOUND error. Therefore, use GET
FIRST or GET LAST when you are uncertain of the current position within
your data.

The effect of GET NEXT when a current position exists (but for different
key values than specified on this GET NEXT) is predictable. However, it
depends on the underlying view and PDM. Specifically, RDM requires a
database scan to find the row specified by the key values supplied; then
some rows might not be found because the starting position is the current
row. Therefore, if you are uncertain what the current position is, use GET
FIRST and GET LAST.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

124 P25-0240-49

After RDM retrieves the last user row, it raises a NOT FOUND condition.
Therefore, ensure that the logic of your program indicates what to do. For
example:

COBOL
GET NEXT ACCOUNT-DATA

NOT FOUND GO TO ACCOUNT-NOT-FOUND.

FORTRAN
GET NEXT ACCOUNT_DATA

NOT FOUND

 GO TO 900

END IF

BASIC
RDM GET NEXT ACCOUNT_DATA

NOT FOUND

 GO TO 900

END IF

You may retrieve user rows using a single key:

COBOL
MOVE 71560 TO CUSTOMER-NO

GET ACCOUNT-DATA USING CUSTOMER-NO

or
MOVE 71560 TO WORK-FIELD

GET ACCOUNT-DATA USING WORK-FIELD

FORTRAN
GET ACCOUNT_DATA USING CUSTOMER_NO

or
CUSTOMER_NO=71560

GET ACCOUNT_DATA USING CUSTOMER_NO

BASIC
RDM GET ACCOUNT_DATA USING CUSTOMER_NO

or
CUSTOMER_NO=71560

RDM GET ACCOUNT_DATA USING CUSTOMER_NO

Defining program logic

Programming Guide 125

This statement retrieves subsequent rows with the same account
number:

COBOL
GET NEXT ACCOUNT-DATA USING CUSTOMER-NO.

NOT FOUND GO TO

NO-MORE-ACCOUNTS-FOR-CUSTOMER

FORTRAN
RDM GET NEXT ACCOUNT_DATA USING CUSTOMER_NO

NOT FOUND

 GO TO 900

END IF

BASIC
GET NEXT ACCOUNT_DATA USING CUSTOMER_NO

NOT FOUND

 GO TO 900

If you use END IF and you specify enough logical keys to identify a row
uniquely in a view, the second GET always returns a NOT FOUND
condition. Only use the following statement once, because there should
be only one such row:

COBOL
GET ACCOUNT-DATA USING CUSTOMER-NO

 ACCOUNT-NO.

FORTRAN
GET ACCOUNT_DATA USING CUSTOMER_NO

 ACCOUNT_NO

BASIC
RDM GET ACCOUNT_DATA USING CUSTOMER_NO,ACCOUNT_NO

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

126 P25-0240-49

Retrieving rows using partial keys
If you are accessing a row using a secondary key, you may omit
characters from the right, substituting the wildcard characters * or =. Note
that you may have substituted your own wild card characters for the
defaults. This is referred to as a generic read.

To illustrate a generic read, assume you are using a view, CUST-
LOCATION, containing the columns NAME and CITY. A series of GETs
would return data in the following order:

NAME CITY

ADAMS A ABERDEEN

BROWN D READING

CARSON C ABERDEEN

COX D READING

LOVE C PORTSMOUTH

SMITH Fred SLOUGH

SMITH P LONDON

SMITH SM MAIDENHEAD

SMYTH M SWINDON

The wildcard * specifies an equal or next match. RDM returns a row with
a key that matches the partial key you specified. If no key matches, RDM
returns the next row. The next value depends on the sort direction the
DBA defined when creating the secondary key. RDM always returns a
row for this option until it reaches the end of the file marker.

Defining program logic

Programming Guide 127

The following table uses the information in the NAME and CITY columns
above and shows the order in which RDM retrieves the information when
you issue a GET using the wildcard *:

Statement Retrieval order
GET CUST- CARSON C ABERDEEN
LOCATION USING C* COX D READING
 LOVE C PORTSMOUTH
 SMITH Fred SLOUGH
 SMITH P LONDON
 SMITH SM MAIDENHEAD
 SMYTH M SWINDON
 OCCURRENCE NOT FOUND.

The wildcard = specifies an equal match. RDM returns only those rows
whose keys exactly match the partial key supplied. The following table
uses the information in the NAME and CITY columns on the previous
page and shows the order in which RDM retrieves the information when
you issue a GET using the wildcard =:

Statement Retrieval order
GET CUST- CARSON C ABERDEEN
LOCATION USING C= COX D READING
 OCCURRENCE NOT FOUND.

When RDM cannot find a row to match the partial key supplied, it returns
OCCURRENCE NOT FOUND.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

128 P25-0240-49

Considerations for generic reads

♦ You must access the data set containing the partial key via a
secondary key. Use DBAID SHOW-NAVIGATION to find out which
access path RDM is using to obtain the data (see “Using the DBAID
Utility subset to test views (VMS)” on page 35).

♦ The partial key specified must have a character data type. Generic
read does not work on the other data types supported by RDM.

♦ The wildcard character must be the rightmost character in the
supplied generic key (you can omit parts of the key from the right
only). RDM ignores any values entered after the wildcard character.
For example:
GET (view-name) USING SM* is valid

GET (view-name) USING SM*TH is accepted but is treated as SM*

♦ You can use compound generic keys; however, the wildcard
character must still be the rightmost character in the string. For
example, for a secondary key with two key parts:
Correct usage: GET (view-name) USING 1234 TE=

Incorrect usage: GET (view-name) USING 12= TEMP

♦ You can specify logical keys after the generic key. For example, for
an index with one key part and a view with three logical keys, you
could enter:
Correct usage: GET (view-name) USING SM* 1234 999

Defining program logic

Programming Guide 129

Retrieving multiple views
You may want to use more than one view in a program. For example,
assume you want to perform a function which uses the three views listed
below (the columns in each view are listed below the view name):

CUSTOMER-ORDER-
VIEW

CUSTOMER-VIEW

PRODUCT-VIEW

Order Number Customer Number Part Number
Customer Number Customer Name Part Name
Part Number Customer Address Part Cost
Quantity Ordered Customer Telephone Quantity in Stock
Part Cost
Total Cost
Ship Date

Perhaps you want to print the customer name and the part name ordered
by a customer. The following steps show how to do this:

1. Place the required customer number and order number into the key
columns CUSTOMER-NUMBER and ORDER-NUMBER:

 COBOL
MOVE 12345 TO CUSTOMER-NUMBER.

MOVE 67890 TO ORDER-NUMBER.

 FORTRAN
CUSTOMER_NUMBER = 12345

ORDER_NUMBER = 67890

 BASIC
LET CUSTOMER_NO = 12345

LET ORDER_NO = 67890

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

130 P25-0240-49

2. Retrieve the CUSTOMER-ORDER-VIEW (using the customer
number and the order number as keys) to find the number of the part
ordered:

 COBOL
GET CUSTOMER-ORDER-VIEW USING CUSTOMER-NUMBER, ORDER-NUMBER.

 FORTRAN
GET CUSTOMER_ORDER_VIEW USING CUSTOMER_NUMBER

+ORDER_NUMBER

 BASIC
RDM GET CUSTOMER_ORDER_VIEW USING CUSTOMER_NO, &

ORDER_NO

3. Let CUSTOMER-VIEW (customer number as a key) to find the
customer’s name.

 COBOL
GET CUSTOMER-VIEW USING CUSTOMER-NUMBER.

 FORTRAN
GET CUSTOMER_VIEW USING CUSTOMER_NUMBER

 BASIC
RDM GET CUSTOMER_VIEW USING CUSTOMER_NUMBER

4. Using part number as a key, retrieve PART-VIEW to find the part
name.

 COBOL
GET PART-VIEW USING PART-NUMBER

where PART-NUMBER comes from CUSTOMER-ORDER-VIEW

 FORTRAN
GET PART_VIEW USING PART_NO

 BASIC
RDM GET PART_VIEW USING PART_NO

Your DBA could do this more efficiently by combining the above
statements into one view.

Defining program logic

Programming Guide 131

Using MARK to save position of a row for later access
MARK causes the RDML processor to mark the current position of the
view established by the previous GET, UPDATE, or INSERT.

COBOL
MARK CUSTOMER-VIEW AT SAVE-LV.

FORTRAN
MARK PART_VIEW AT SAVE_LV

BASIC
RDM MARK PART_VIEW AT SAVE_LV

The AT clause specifies where RDM should save the MARK on the view.
You must define the column used. For example, define SAVE-LV
(underscores for FORTRAN AND BASIC) in your COBOL program as a
PICTURE X(4), FORTRAN program as a CHARACTER*4, and BASIC
program as a STRING = 4 column. You may use the AT clause in the
GET to reread the row at the position set by the MARK even if you have
performed other operations on this view.

Using GET to control record holding

The considerations discussed in this section apply to all programs that
access the PDM through RDM—that do not directly access the physical
data.

Excessive record holding can cause a significant drop in performance.
Some record holding is necessary to ensure data integrity. However,
when other tasks attempt to access a held record, they must reset and try
again until the record is released. These repeated resets increase
processing time and impair performance.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

132 P25-0240-49

In a multitasking environment, records held by another task are
temporarily unavailable. RDM application programs use the RDML
commands GET, GET FOR UPDATE, and UPDATE. GET retrieves the
record but does not hold it; GET FOR UPDATE retrieves and holds the
record; UPDATE updates the record. The duration of the record holding
and the success of the update depend on how you combine these
commands in a program. The following table shows three examples of
retrieving and updating records and some considerations for each
example:

Purpose Sample GET/UPDATE Considerations

Minimize record
holding

GET Retrieves the record but does not hold it
until later in the UPDATE. Other tasks
CAN modify the record between the time
your program accesses it and updates or
deletes it.

 UPDATE A data error occurs on the update if any
columns have been changed and RDM
returns an FSI of D, a VSI of C, and flags
each changed column with an ASI of C.
The changed columns that are flagged
contain the original values, not the
changed ones. Therefore, you can save
the column values and retrieve the altered
record to resolve conflicts.

Ensure an
UPDATE
succeeds

GET FOR UPDATE
UPDATE

Retrieves and holds the record from the
start, preventing any other program from
updating the record. However, if many
programs use the record, it may impair
performance.

Ensure record
stability during a
READ

GET FOR UPDATE Holds the record without updating it. This
ensures that other programs cannot
update the record while you are reading it.
However, if many programs use the
record, it may impair performance.

Defining program logic

Programming Guide 133

Handling an unsuccessful RDM function
To handle unsuccessful RDM functions, you can supply an error
paragraph or NOT FOUND clause. (For more information on error
handlers, see “Handling error conditions” on page 141.) If you do not
supply an error handler and you receive anything other than an * or X
FSI, RDM performs an automatic RESET and repositions you at the top
of the view. (For a complete listing of FSI values and their meanings, see
“Validating data” on page 115.) For example, if you perform a GET and
then an UPDATE on a read-only view, the UPDATE fails and you are
repositioned at the top of the view. The next unqualified GET returns the
first row in the view.

If you start your view processing with a keyed GET NEXT (default), a
repeat of the same GET returns a NOT FOUND error. Because an error
repositions you at the top of the view, another execution of the GET
returns the correct row.

A data error will not lose position after an UPDATE or DELETE. (INSERT
does not apply since the position of the view is determined by the
INSERT.) If a data error is encountered in these cases, the program can
request a GET SAME to look at the database row. When an error occurs,
RDM does not alter the input row.

Modifying rows
You can modify a row in three ways:

♦ Update the data already in the row (UPDATE)

♦ Delete the row (DELETE)

♦ Insert a new row (INSERT)

The DBA allows some views to modify the database, while other views
are read-only.

When you modify rows, issue a COMMIT after each logical transaction
(which might involve more than one change). COMMIT makes
modifications permanent. For more information on using COMMIT, see
“COMMIT” on page 167.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

134 P25-0240-49

Using UPDATE
Use UPDATE to modify the contents of columns. Before performing
UPDATE, you use GET to access the view. For example:

COBOL
GET PART-VIEW USING PART-NAME

.

.

.

UPDATE PART-VIEW.

FORTRAN
GET PART_VIEW USING PART_NAME

.

.

.

UPDATE PART_VIEW

BASIC
RDM GET PART_VIEW USING PART_NAME

.

.

.

RDM UPDATE PART_VIEW

You cannot use UPDATE to modify a view key. The replacement of a
view key is not allowed by the RDML processor since the view key
locates the row to be replaced. To change a view key, first DELETE the
old row, then INSERT a new one.

Defining program logic

Programming Guide 135

Using DELETE
Use DELETE to remove a row from the database. Before performing
DELETE, use GET to access the view.

This example deletes the one occurrence of PART-VIEW obtained based
on the value of PART_NAME:

COBOL
GET PART-VIEW USING PART-NAME

DELETE PART-VIEW.

FORTRAN
GET PART_VIEW USING PART_NAME

DELETE PART_VIEW

BASIC
RDM GET PART_VIEW USING PART_NAME

RDM DELETE PART_VIEW

If a required column is not included in a user view, then a DELETE
statement may delete more than one row.

The DELETE ALL starts at the beginning of the subset of rows with the
specified keys and deletes each occurrence until a NOT FOUND
condition exists. This example deletes all rows with the key value
specified:

COBOL
GET SAMPLE-VIEW USING KEY1

DELETE ALL SAMPLE-VIEW.

FORTRAN
GET CUSTOMER_ORDER_VIEW USING CUSTOMER_NAME

DELETE ALL CUSTOMER_ORDER_VIEW

BASIC
RDM GET CUSTOMER_ORDER_VIEW USING CUSTOMER_NAME

RDM DELETE ALL CUSTOMER_ORDER_VIEW

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

136 P25-0240-49

When you delete rows, consider the following constraints: To delete an
entity from the database means to remove an object (a product). This
differs from removing a relationship. If an employee transfers from one
department to another, you do not remove the department. You remove
the relationship between the employee and the first department.

Typically, a relationship delete can occur at any time. However, you
cannot delete an entity if it is related to any other object. Therefore, to
remove the employee record, you would first remove the relationship to
the department as well as to any other objects.

You may delete an entity and all its relationships from the database. For
example, if a customer cancels all outstanding orders and wants to be
removed from your files, you first delete all relationships, and then delete
the customer. You can do this in one RDML statement by coding
DELETE ALL in the application program if your DBA allows such an
operation on the view.

Use DELETE ALL with extreme caution.

Defining program logic

Programming Guide 137

Using INSERT
Use INSERT to add a new user row to the database. The following
example shows this:

COBOL
INSERT CUSTOMER-VIEW.

FORTRAN
INSERT CUSTOMER_VIEW

BASIC
RDM INSERT CUSTOMER_VIEW

INSERT does not update any columns. For example, a view might
contain both customer and account data. If you insert new account
information into the view, then none of the existing customer information
is updated, even if it has been changed in your data area. You must code
an explicit update after the insert to update any columns present in the
view before the insert.

Controlling the placement of the row. When inserting a user row in
nonuniquely keyed rows, you can use NEXT, FIRST, LAST, or PRIOR to
control the placement of the new row. You cannot determine the location
if your DBA has already defined an order for the view. For example,
INSERT NEXT ACCOUNT-DATA instructs SUPRA Server to insert the
new row after the current one (the last row accessed).

If your DBA uniquely keyed the view, order is already determined. If the
keys you are inserting already have values, RDM raises the DUP KEY
condition and performs the action you specified on the DUP KEY phrase.
The following sample INSERT shows this:

COBOL
INSERT CUSTOMER-VIEW
 DUP KEY GO TO ALREADY-THERE.

FORTRAN
INSERT CUSTOMER_VIEW
 DUP KEY
 GO TO 100
END IF

BASIC
RDM INSERT CUSTOMER_VIEW
 DUP KEY
 GO TO 100
END IF

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

138 P25-0240-49

Adding entities and relationships. You can always add a new entity (a
customer) assuming you have space on the database and the authority to
INSERT. Typically, you cannot add a new relationship until all the entities
being related exist. You cannot add a relationship between an employee
and a department until the department and employee entities have been
added.

However, in one operation you may add an entity and a relationship. For
example, you may add an employee and the first department assignment
in a single INSERT request, if the DBA allows this operation.

Inserting null values. Insert a null value on INSERTS or UPDATES
only. To insert a null value, change the appropriate column’s ASI to N
prior to an RDML INSERT or UPDATE. The following statement inserts
the null value into the column CUST-NAME in the view CUSTOMER:

COBOL
MOVE "N" To ASI-CUST-NAME

.

.

.

INSERT CUSTOMER

FORTRAN
ASI_CUST_NAME= 'N'

.

.

.

INSERT CUSTOMER

BASIC
CUSTOMER::ASI_CUST_NAME = "N"

.

.

.

INSERT CUSTOMER

Defining program logic

Programming Guide 139

Controlling database recovery
Use COMMIT and RESET to control database recovery.

♦ COMMIT makes the changes to the database (INSERT, DELETE,
UPDATE) permanent if the database has Task Level Recovery.

♦ RESET instructs SUPRA Server to perform the standard error
recovery procedure for the previous RDML requests—to undo all
database changes made by this task since the most recent COMMIT.
If you do not supply an error handler (see “Handling error conditions”
on page 141), a RESET request is automatically issued when a
major error occurs.

♦ Sign-on and sign-off imply a COMMIT.

If the database contains RMS files, VMS RMS Recovery Unit Journaling
may be enabled. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for a description of how
to enable Recovery Unit Journaling for physical files. Define the logical
name CSI_RMS_RU_ON to be TRUE before invoking DBAID. This
allows RDM to log the transactions to the RMS files in a journal file that
you can use to update or reset the RMS files if needed.

You can define CSI_RMS_RU_ON TRUE in the group logical name
table. In doing this you do not need to repeat the definition unless the
machine on which you are working goes down. Alternatively, define
CSI_RMS_RU_ON TRUE before invoking DBAID as follows:
$DEFINE CSI_RMS_RU_ON TRUE

$RUN CSVDBAID

This ensures that records in RMS data sets are rolled back to the last
successful COMMIT point if a system or application failure occurs. This
matches Task Level Recovery for PDM data sets.

RMS Recovery Unit Journaling will not work across a network. RMS files
marked for Recovery Unit Journaling are inaccessible from a remote
node running RDM applications.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

140 P25-0240-49

Handling error conditions
Include an error handler in your program to indicate how RDM should
handle errors. If you do not provide one, RDM generates a default error
handler whenever a view request fails. There is a different error handler
for each view and an error handler for those functions that do not involve
a specific view.

Understanding COBOL error handlers
To name an error handler, combine ERROR-ON- with the view name.
For example:
ERROR-ON-PROD.

The following example illustrates a simple COBOL error handler:
PROD-TRAN.

 GET PROD USING TRAN-PROD

 NOT FOUND PERFORM ERROR-ON-PROD.

 .

 .

 .

ERROR-ON-PROD.

 DISPLAY "** ERROR **" ULT-MESSAGE.

 DISPLAY " THIS JOB IS NOW TERMINATED ".

 RESET.

 SIGN-OFF.

 STOP RUN.

Defining program logic

Programming Guide 141

If you do not include the ERROR-ON-PROD paragraph, RDM generates
the following default error paragraph for the view PROD:
ERROR-ON-PROD.

 RESET.

 SIGN-OFF.

 STOP RUN.

If you do not include a RESET before the SIGN-OFF, RDM performs an
automatic COMMIT which might leave the database inconsistent. If you
are coding a GET and the row you are retrieving might not exist, you
should use the NOT FOUND clause. If you do not include it, the error-
handler is entered if the row does not exist. You may also add phrases
(such as DUP, ELSE, NOT FOUND, etc.) to your basic program
statements to handle common exception conditions in your paragraph.

If an error occurs on a SIGN-ON, SIGN-OFF, COMMIT, RESET,
RELEASE or FORGET, RDM performs ERROR-ON-ULT-CONTROL.
Like other error handlers, you can either explicitly code an error handler
or let RDM generate a default error handler which includes a RESET and
STOP RUN.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

142 P25-0240-49

Loop prevention

If an RDM statement fails, RDM returns an FSI value other than : and
your program branches to an error handler routine. For example, if the
initial SIGN-ON failed and the RESET or SIGN-OFF fails, the following
will loop.
ERROR-ON-ULT-CONTROL.

 DISPLAY "** ERROR **" ULT-MESSAGE.

 RESET.

 SIGN-OFF.

 STOP RUN.

You can include a test in the error handler to determine whether it has
already been invoked, thereby avoiding the loop. For example:
01 ERROR-FOUND PIC X VALUE "N".

 .

 .

 .

ERROR-ON-ULT-CONTROL.

 DISPLAY "** ERROR **" ULT-MESSAGE.

 IF ERROR-FOUND = "Y"

 STOP RUN.

 MOVE "Y" TO ERROR-FOUND.

 RESET.

 SIGN-OFF.

 STOP RUN.

You could also use the following error handler if a program terminates
without doing a SIGN-OFF (RESET and SIGN-OFF are done
automatically):
ERROR-ON-ULT-CONTROL.

 DISPLAY "** ERROR **" ULT-MESSAGE.

 STOP RUN.

A data error will not lose position after an UPDATE or DELETE. (INSERT
does not apply since the position of the view is determined by the
INSERT.) If a data error is encountered in these cases, the program can
request a GET SAME to look at the database row. When an error occurs,
the Relational Data Manager will not alter the input row.

Defining program logic

Programming Guide 143

Understanding FORTRAN and BASIC error handlers
The following five considerations deal with the FORTRAN and BASIC
error-handlers:

1. Each INCLUDE statement may have an associated ON ERROR
statement, which introduces the error handler associated with this
view or ULT-CONTROL. For example:

 FORTRAN BASIC
INCLUDE PART-VIEW RDM INCLUDE PART-VIEW

 ON ERROR RDM ON ERROR

 GO TO 999 GO TO 999

 END ERROR-HANDLER END ERROR HANDLER

 The preprocessor expands this simple error handler in-line after any
ACCESS statement which refers to PART-VIEW, instead of the
default error-handler. RDM executes the error handler if any error
occurs in the call to the RDM processor.

 Any RDML statement that does not use any particular view
(COMMIT, SIGN-OFF) will use the error handler associated with
ULT-CONTROL (either the default error handler or the one specified
after INCLUDE ULT-CONTROL). Each new subroutine which
includes a view must specify an error handler, or SUPRA Server will
use the default error handler.

2. The default error handler consists of a call to a FORTRAN
subroutine, CSVDERROR, or a BASIC subroutine, CSVBERROR.
The source of these subroutines is supplied in the SUPRA
executable directory; you may modify or replace it. The supplied
code displays the contents of ULT-CONTROL and performs a
RESET and SIGN-OFF. You must link CSVDERROR to your
FORTRAN RDML program and/or CSVBERROR to your BASIC
RDML program.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

144 P25-0240-49

 The following is a listing of CSVDERROR:

FORTRAN
1 1 SUBROUTINE CSVDERROR(PASSED_ULT_CONTROL)

 * This is the supplied default error-handling routine for

 * the CINCOM FORTRAN PREPROCESSOR. The passed copy of

 * ULT_CONTROL is used to construct the best error
messages

 * possible, given that the view itself cannot be passed
to

 * this general error routine. The routine then signs off

 * from RDM and stops the program. For ease of use, this

 * routine, or one similar to it, should be placed in an

 * object library accessible to the programmers using the

 * FORTRAN preprocessor.

2 ULTRA C INCLUDE ULT_CONTROL

3 ULTRA C ON ERROR

4 ULTRA C CONTINUE

5 ULTRA C END ERROR-HANDLER

6 8 CHARACTER*(ULT_CONTROL_LEN) PASSED_ULT_CONTROL

7 9 ULT_CONTROL=PASSED_ULT_CONTROL

8 10 TYPE
100,ULT_FSI,ULT_VSI,ULT_OBJECT_NAME,ULT_OPERATION,

 1 ULT_MESSAGE

9 11 100 FORMAT(' ULT_FSI=',A1,'. ULT_VSI=',A1,'.
OBJECT=',A30/

 1 '. OPERATION=',A6,'. MESSAGE=',A40,'.')

10 ULTRA C RESET

11 ULTRA C SIGN-OFF

12 27 STOP

13 28 END

Defining program logic

Programming Guide 145

 The following is a listing of CSVBERROR:

BASIC
 100

 SUB CSVBERROR(ULT_CONTROL_REC PASSED_ULT_CONTROL)

! This is the supplied default error-handling routine for the

! CINCOM BASIC PREPROCESSOR. The passed copy of ULT_CONTROL

! is used to construct the best error messages possible,

! given that the view itself cannot be passed to this general

! error-routine. The routine then signs off from RDM and

! stops the program. For ease of use, this routine, or one

! similar to it, should be placed in an object library

! accessible to the programmers using the BASIC preprocessor.

ULTRA ! RDM INCLUDE ULT_CONTROL

ULTRA ! RDM ON ERROR

ULTRA ! GOTO ERROR2

ULTRA ! END ERROR-HANDLER

 PRINT ' ULT_FSI='; PASSED_ULT_CONTROL::ULT_FSI;

 PRINT '. ULT_VSI='; PASSED_ULT_CONTROL::ULT_VSI;

 PRINT '. OBJECT='; PASSED_ULT_CONTROL::ULT_OBJECT_NAME;

 PRINT '. OPERATION='; PASSED_ULT_CONTROL::ULT_OPERATION;

 PRINT '. MESSAGE='; PASSED_ULT_CONTROL::ULT_MESSAGE

ULTRA ! RDM RESET

ULTRA ! RDM SIGNOFF

 ERROR2:STOP

 END SUB

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

146 P25-0240-49

3. Handling DUP KEY and NOT FOUND statements:

- If you specify DUP KEY after an INSERT or the NOT FOUND
after a GET statement, the error handler for the view is called
only if the FSI status code is neither N nor *. See “Validating
data” on page 115 for a complete listing of FSI values.

- If the FSI is N, the statements after the DUP KEY or NOT
FOUND are executed until a matching ELSE or END IF is found.

- If a matching ELSE is found, the statements after it are executed
only if the FSI value is *.

 The following examples illustrate the use of the NOT FOUND and
DUP KEY statements:

 FORTRAN
GET PART_VIEW USING PART_NAME

NOT FOUND

 WRITE (*,*) 'PART', PART_NAME,'NOT FOUND'

 GO TO 170

END IF

INSERT CUSTOMER_ORDER_VIEW

DUP KEY

 WRITE (*,*) 'THE ORDER ALREADY EXISTS'

 GO TO 180

ELSE

 WRITE (*,*) 'ORDER SUCCESSFULLY ADDED'

END IF

Defining program logic

Programming Guide 147

 BASIC
RDM GET PART_VIEW USING PART_NAME

NOT FOUND

 PRINT "PART", PART_NAME,"NOT FOUND"

 GO TO 170

END IF

RDM INSERT CUSTOMER_ORDER_VIEW

DUP KEY

 PRINT "THE ORDER ALREADY EXISTS"

 GO TO 180

ELSE

 PRINT "ORDER SUCCESSFULLY ADDED"

END IF

4. A data error will not lose position after an UPDATE or DELETE.
(INSERT does not apply since the position of the view is determined
by the INSERT.) If a data error is encountered in these cases, the
program can request a GET SAME to look at the database record.
When an error occurs, RDM will not alter the input record.

5. The generated code for access statements, for example, GET,
UPDATE, and so on, is the same as that for COBOL, except with
FORTRAN or BASIC syntax. If the ACCESS statement does not use
a view (SIGN-ON), then RDM uses the error handler for
ULT_CONTROL. The test for an error is the list of statements
specified after the ON ERROR statement of the INCLUDE for the
particular view being used. If no error clause is specified, then the
procedure CSVDERROR (FORTRAN) or CSVBERROR (BASIC) is
called.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

148 P25-0240-49

Implementing and executing an RDM program
Before you run your RDML program, perform the following four steps (for
a sample program in COBOL, FORTRAN, and BASIC, see the Appendix
on page 375):

You must have access to the SUPRA Directory database, SUPRAD, to
precompile your RDM program. You cannot precompile your program if
the logical name CSI_NODIRECTORY is set to TRUE.

1. Run the RDM preprocessor (Cincom supplies a command file that
you can use which is located in the directory SUPRA_COMS). When
you run the preprocessor, it generates a source file and a file
containing preprocessor errors (see the following table). Symbols for
the preprocessors are defined in
SUPRA_COMS:SUPRA_SYMBOL.COM.

Language/Cincom-
supplied command file

Command

Source file
generated

Error file
generated

COBOL/ $RUNCOBOL filename.COB filename.COL
SUPRA_COMS:
RUNCOBOL.COM

FORTRAN/ $RUNFORTRA filename.FOR filename.FOL
SUPRA_COMS:
RUNFORTRA.COM

BASIC/ $RUNBASIC filename.BAS filename.BAL
SUPRA_COMS:
RUNBASIC.COM

The Cincom-supplied command file is set up to display a message
on the terminal if an error occurs during preprocessing. To handle
errors or warnings during preprocessing, you can set default actions
by modifying this file. See the command file for suggestions on
setting these default actions.

Implementing and executing an RDM program

Programming Guide 149

$RUNCOBOL
Enter COBOL Program Name and Extensions: INVSYSTEM.COP
Enter Database Name: INVOIC
Enter COBOL format (Term/ANSI)-[CR] = TERM:

$RUNFORTRA
Enter FORTRAN Program Name and Extension: INVSYSTEM.FOP
Enter Database Name: INVOIC

$RUNBASIC
Enter BASIC Program Name and Extension: INVSYSTEM.BAP
Enter Database Name: INVOIC

In the preceding figure, the Program Name and Extension is the
name of the file containing your RDML statements before they are
preprocessed. You must specify the file extension if it is not .COP
(COBOL), .FOP (FORTRAN), or .BAP (BASIC). Database Name is
the name of the database that all the views use.

You could enter these specifiers on one line. For example:
COBOL: $RUNCOBOL INVSYSTEM.COP INVOIC TERM

2. Run the VAX compiler. This generates an object file (filename .OBJ)
and a listing containing any language syntax errors (filename .LIS) if
specified. For example:
$COBOL /LIST/CROSS_REFERENCE INVSYSTEM.COB

$FORTRAN /LIST/CROSS_REFERENCE INSYSTEM.FOR

$BASIC /LIST/CROSS_REFERENCE INSYSTEM.BAS

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

150 P25-0240-49

3. Link your RDML program. This links your program with the run-time
RDM system (RDML processor) and generates an executable file
you can run.

CSVDERROR.FOP and CSVBERROR.BAP must be precompiled
and compiled prior to linking your RDML program. This task must
only be done once. These files are delivered in the SUPRA_EXE
directory. If your DBA has placed a procedure CSVDERROR
(FORTRAN) or CSVBERROR (BASIC) in a system library, then you
will not need to specify it on the link command line.

 To link your program, use the LINK command:

 COBOL
 $@SUPRA_COMS:CSVLINK list-of-module-names

 Destination Directory:

 FORTRAN
 $@SUPRA_COMS:CSVLINK list-of-module-names,CSVDERROR

 Destination Directory:

 BASIC
 $@SUPRA_COMS:CSVLINK list-of-module-names,CSVBERROR

 Destination Directory

4. Define the database your program uses if it’s not already defined;
then run your program as follows:

 COBOL
$DEFINE /USER CSI_SCHEMA database-name

$RUN program

 FORTRAN
$DEFINE /USER CSI_SCHEMA database-name

$RUN program

 BASIC
$DEFINE /USER CSI_SCHEMA database-name

$RUN program

Implementing and executing an RDM program

Programming Guide 151

The screen illustrations at the end of this section show an example of the
whole process using the following program name:

COBOL
INVSYSTEM.COP

FORTRAN
INVSYSTEM.FOP

BASIC
INVSYSTEM.BAP

and INVOIC as the database name.

If you do not enter a directory in the Destination Directory field, the output
will be placed in your current directory.

$RUNCOBOL
Enter COBOL Program Name and Extension: INVSYSTEM.COP
Enter Database Name: INVOIC
Enter COBOL format (term/ANSI) - [CR]=Term:
$COBOL/ANSI/LIST/CROSS_REFERENCE INVSYSTEM.COB
$@SUPRA_COMS:CSVLINK INVSYSTEM
Destination Directory:
$DEFINE/USER CSI_SCHEMA INVOIC
$RUN INVSYSTEM

$RUNFORTRA
Enter FORTRAN Program Name and Extension: INVSYSTEM.FOP
Enter Database Name: INVOIC
$FORTRAN/LIST/CROSS_REFERENCE INVSYSTEM.FOR
$@SUPRA_COMS:CSVLINK INVSYSTEM,CSVDERROR
Destination Directory:
$@SUPRA_COMS:RUNCSV INVSYSTEM
Enter Database Name: INVOIC

$RUNBASIC
Enter BASIC Program Name and Extension: INVSYSTEM.BAP
Enter Database Name: INVOIC
$BASIC/LIST/CROSS_REFERENCE INVSYSTEM.BAS
$@SUPRA_COMS:CSVLINK INVSYSTEM,CSVBERROR
Destination Directory:
$@SUPRA_COMS:RUNCSV INVSYSTEM
Enter Database Name: INVOIC

For sample COBOL, FORTRAN, and BASIC programs, see the Appendix
on page 375.

Chapter 4 Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)

152 P25-0240-49

5
Coding RDM program statements
(VMS)

RDM statements are divided into two groups: program data statements
and program logic statements. For quick reference, this chapter provides
the program statement names in the top, outside corner of each page.

Coding program data statements
The Data Division of a COBOL program and the Declaration Statements
of a FORTRAN or BASIC program describe the format and
characteristics of data in an application program. If you are using
COBOL, code the statements in either the Working-Storage Section or
the Linkage Section of your program.

INCLUDE view-data
Use INCLUDE to indicate the views your program needs.

INCLUDE view-data: COBOL

In COBOL you also use INCLUDE to indicate where (in the Data Division)
you should code your views.

level-number [user-view-name] INCLUDE view-name [(data-item-
list)]

 Programming Guide 153

level-number

Description Required. A COBOL group item level number.

Options 01–29

user-view-name

Description Optional. Assigns a valid view name to the user view for this program.

view-name

Description Required. Indicates the name of the valid view you want to use. Your
DBA or other authorized person must define the view on the Directory.

data-item-list

Description Optional. Allows you to use a subset of the columns in the view,
indicating which ones you want to use.

Format (data-item-name1,data-item-name2...data-item-namen) A list of columns
in the specified view. Separate the columns by commas and enclose
them in parentheses. Spread the list over several continuation lines if
necessary.

Considerations

♦ If you specify no column list, all columns from the view are included.

♦ Required columns must have a valid, non-null value when inserting a
row into a view. Therefore, if you do not include all REQUIRED
columns into a user view, your program will not be able to perform
INSERTS into the view.

♦ If you reorder logical keys in a view, you may inadvertently force
RDM to read many rows from the view to satisfy a GET because no
physical value is specified. The DBA has defined the key order on the
Directory to maximize performance.

Chapter 5 Coding RDM program statements (VMS)

154 P25-0240-49

General considerations

♦ Code an INCLUDE in the Data Division of your COBOL program to
identify the view you want to use.

♦ Code an INCLUDE in the Linkage Section of your COBOL
subroutines when rows are being passed as parameters.

♦ Use column lists to enhance the performance of your application. If
your user view excludes all columns from a physical row, then RDM
does not need to access that physical row to provide your user-view
row.

♦ Each user view acts independently of all other user views included,
even those from the same view. For example, if two user views are
based on the same view, a GET on the first user view retrieves data
defined in the first user view. You use another GET to retrieve the
data defined for the second user view. In fact, the data requirements
for both user views are obtained from the first row in the view.

Coding program data statements

Programming Guide 155

Examples The following examples generate data definitions in the Working-Storage
Section:

Input
01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).

Output
01 LUV-CUSTOMER.

 10 CUSTOMER.

 20 CUST-NO PIC X(006).

 20 NAME PIC X(020).

 20 CITY PIC X(015).

 10 ASI-CUSTOMER.

 20 ASI-CUST-NO PIC X.

 20 ASI-NAME PIC X.

 20 ASI-CITY PIC X.

Input
01 CONTACT INCLUDE PROD.

Output
 01 LUV-CONTACT.

10 CONTACT.

 20 PROD-NO PIC X(006).

 20 PROD-DESC PIC X(040).

 20 PROD-RENT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-MAINT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-PURCH PIC S9(07)V9(02) USAGE COMP.

10 ASI-CONTACT.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

 20 ASI-PROD-RENT PIC X.

 20 ASI-PROD-MAINT PIC X.

 20 ASI-PROD-PURCH PIC X.

Chapter 5 Coding RDM program statements (VMS)

156 P25-0240-49

INCLUDE view-data: FORTRAN and BASIC

FORTRAN

INCLUDE [COMMON] [user-view-name=]
view-name [(data-item-list)]

[ON ERROR

error-handler

END ERROR-HANDLER]

BASIC

RDM INCLUDE [COMMON] [user-view-name=]
view-name [(data-item-list)]

[RDM ON ERROR

error-handler

END ERROR-HANDLER]

Coding program data statements

Programming Guide 157

COMMON

Description Optional. Declares a common area having the name of the user view
containing the record data area.

user-view-name=

Description Optional. Names the user view your program uses.

Format Must be part of a valid view. Place the equal sign after the user view
name.

Considerations

♦ The user view name must use the same syntax as DBAID.

♦ You should always assign a user-view-name to the view-name in the
INCLUDE so that if a view name changes on the Directory, you only
have to modify the user-view-name in the INCLUDE statement (not
all places it occurs in your program).

view-name

Description Required. Names the valid view (stored on the Directory) you want to
use.

Chapter 5 Coding RDM program statements (VMS)

158 P25-0240-49

(data-item-list)

Description Optional. Data items you want to use from the view.

Format ([user-data-item-name=]data-item-name1,data-item-name2,...) A list of
data items in the specified view. The data items are separated by
commas and enclosed by parentheses. The list may be spread over
several continuation lines if necessary.

Considerations

♦ If you specify no data item list, all data items from the view are
included.

♦ Required data items must have a non-null value when inserting a
record into a view. Therefore, if you do not include all REQUIRED
data items into a user view, your program will not be able to perform
INSERTS into the view.

♦ If you reorder logical keys in a view, you may inadvertently force
RDM to read many records to satisfy a GET because your DBA did
not specify physical values. (The DBA has defined the key order on
the Directory to maximize performance.)

♦ You may rename each data item specified in the data item list if two
views reference the same data name without specifying aliases.

 [new-data-item-name1=] data-item-name1,

 [new-data-item-name2=] data-item-name2,

 [new-data-item-name3=] data-item-name3,.

Coding program data statements

Programming Guide 159

ON ERROR (FORTRAN)

RDM ON ERROR (BASIC)

Description Optional. Introduces the error handler for this view.

Consideration Required if you code an error handler.

error-handler

Description Optional. A sequence of FORTRAN or BASIC statements with no labels
and with no RDML statements.

Consideration These statements are expanded in-line. Therefore, if the view is used
many times, it should not be too long.

END ERROR-HANDLER

Description Required if you specify ON ERROR. Terminates the error handler for
this view.

Format This is a single FORTRAN or BASIC RDML statement.

Chapter 5 Coding RDM program statements (VMS)

160 P25-0240-49

General considerations

♦ Code an INCLUDE as a declaration of your program to identify the
view you want to use.

♦ Code an INCLUDE as a declaration in your subroutines when a user
record is being passed as a parameter.

♦ Using data item lists can enhance the performance of your
application. If your user view excludes all data items from a physical
record, then RDM does not need to access that physical record to
provide your user view record.

♦ Each user view acts independently of all other user views included,
even those from the same view. For example, if two user views are
based on the same view, a GET on the first user view retrieves data
defined in that user view. Use another GET to retrieve the data
defined for the second user view. In fact, the data requirements for
both user views are obtained from the first row in the view.

♦ Use underscores and hyphens as follows: All names in the INCLUDE
statement may use either underscores (_) or hyphens (-). However,
these names will be expanded using the underscore instead of the
hyphen. Use the underscore in the remainder of your program.

♦ (FORTRAN only) INCLUDE can be confused with both the
FORTRAN text INCLUDE and with an assignment statement. If there
is a quote following the word INCLUDE, the statement is assumed to
be a FORTRAN text INCLUDE. If there is no space following the
word INCLUDE, then the statement is assumed to be an assignment.
Otherwise, the statement is assumed to be an RDML statement.

♦ You should always assign a user-view-name to the view-name in the
INCLUDE. This minimizes the impact on your application of changing
a view name as recorded on the Directory—you will only have to
change the name in the INCLUDE, not every reference to the view
name in your application program.

Coding program data statements

Programming Guide 161

Examples The following examples generate data definitions for the user view
PARTS, consisting of the data items PART_NAME and
FABRICATION_COST from the view V1. The first data item is renamed
to V1_PART. A data area is initialized (the names beginning ULT$) to
hold a description of the user view.

FORTRAN
C INCLUDE PARTS=V1(V1_PART=PART-NAME,FABRICATION-COST)
 CHARACTER*6 V1_PART
 INTEGER*4 FABRICATION_COST
 CHARACTER*1 ASI_V1_PART,ASI_FABRICATION_COST
 EQUIVALENCE (V1_PART,PARTS(1:6))
 BYTE ULB_FABRICATION_COST(4)
 EQUIVALENCE (ULB_FABRICATION_COST,FABRICATION_COST),(ULB
 +FABRICATION_COST,PARTS(7:10))
 EQUIVALENCE (ASI_V1_PART,PARTS(11:11))
 EQUIVALENCE (ASI_FABRICATION_COST,PARTS(12:12))
 INTEGER*4 PARTS_LEN
 PARAMETER(PARTS_LEN=12)
 CHARACTER*(PARTS_LEN)PARTS
 CHARACTER ULT$PARTS*30,ULT$V1_PART*1&,ULT$FABRICATION_COST*2$,
 +ULT_END_VIEW2*4
 DATA ULT$PARTS/'V1 '/ULT$V1_PART
 +/'006C00PART-NAME,'/ULT$FABRICATION_COST
 +/'004B00FABRICATION-COST,'/ULT_END_VIEW2/'END.'/
 CHARACTER*75 ULT$2
 EQUIVALENCE
(ULT$2,ULT$PARTS),(ULT$2(31:47),ULT$V1_PART),(ULT$2(48

 +:71),ULT$FABRICATION_COST),(ULT$2(72:75),ULT_END_VIEW2

In FORTRAN, PARTS_LEN may be used to declare parameters to a
subroutine of the same length as the view PARTS. The intermediate
variable ULB_FABRICATION_COST is declared only to avoid a
FORTRAN or BASIC compiler warning.

BASIC
!RDM INCLUDE PARTS=V1(V1_PART=PART-NAME,FABRICATION-COST)
RECORD PARTS_REC
STRING V1_PART=6,LONG FABRICATION_COST
STRING ASI_V1_PART = 1,ASI_FABRICATION_COST = 1
END RECORD
DECLARE PARTS_REC PARTS
DECLARE STRING CONSTANT PARTS_ULT ="V1
"+

"006C00PART-NAME,"+"004B00FABRICATION-COST,"+"END."

Chapter 5 Coding RDM program statements (VMS)

162 P25-0240-49

INCLUDE ULT-CONTROL
Use INCLUDE ULT-CONTROL to include the special view ULT-
CONTROL in a program.

INCLUDE ULT-CONTROL: COBOL

level-number INCLUDE ULT-CONTROL.

level-number

Description Required. A COBOL group item level number.

Options 01–29

General considerations

♦ You must include ULT-CONTROL in each program which issues an
RDML request. Subroutines which accept input views but perform no
access themselves do not need this special view.

♦ Code an INCLUDE ULT-CONTROL in the Linkage Section of your
application program if RDM is passing it from a calling module.

Example The following adds ULT-CONTROL to your program.
01 INCLUDE ULT-CONTROL.

Example output The following example illustrates the expansion of ULT-CONTROL:
01 ULT-CONTROL.

 10 ULT-OBJECT-NAME PIC X(30).

 10 ULT-OPERATION.

 20 ULT-ID PIC X(2).

 20 ULT-OPCODE PIC X.

 20 ULT-POSITION PIC X.

 20 ULT-MODE PIC X.

 20 ULT-KEYS PIC X.

 10 ULT-FSI PIC X.

 10 ULT-VSI PIC X.

 10 FILLER PIC X(2).

 10 ULT-MESSAGE PIC X(40).

 10 ULT-PASSWORD PIC X(8).

 10 ULT-OPTIONS PIC X(4).

 10 ULT-CONTEXT PIC X(4).

 10 ULT-LVCONTEXT PIC X(4).

Coding program data statements

Programming Guide 163

INCLUDE ULT-CONTROL: FORTRAN and BASIC

FORTRAN

INCLUDE [COMMON] ULT-CONTROL

[ON ERROR

error-handler

END ERROR-HANDLER]

BASIC

RDM INCLUDE [COMMON] ULT-CONTROL

[RDM ON ERROR

error-handler

END ERROR-HANDLER]

Chapter 5 Coding RDM program statements (VMS)

164 P25-0240-49

COMMON

Description Optional. Declares a common area named ULT-CONTROL.

ON ERROR (FORTRAN)

RDM ON ERROR (BASIC)

Description Optional. Introduces the error handler for ULT-CONTROL.

Consideration Required if you code an error handler.

error-handler

Description Optional. A sequence of statements with no labels and with no RDML
statements.

Considerations

♦ RDM uses this error handler after any RDML statement which does
not specify a view.

♦ The preprocessor expands these statements in-line. Therefore, the
error handler should not be too long.

END ERROR-HANDLER

Description Required if you did specify ON ERROR. Terminates the error handler for
this view.

General considerations

♦ You must include ULT-CONTROL in each program that issues an
RDML request. Subroutines which accept input views but perform no
access themselves do not need this special view.

♦ Code INCLUDE ULT-CONTROL in your application subroutine if it is
being passed from a calling module.

Coding program data statements

Programming Guide 165

Example To add the special view ULT-CONTROL to your FORTRAN or BASIC
program, code the following statement:

FORTRAN
INCLUDE ULT-CONTROL

BASIC
RDM INCLUDE ULT-CONTROL

Example output FORTRAN
C INCLUDE ULT-CONTROL

 CHARACTER ULT_OBJECT_NAME*30,ULT_OPERATION*6,ULT-
FSI*1,ULT_VSI*1,

 +ULT_FILLER*2,ULT_MESSAGE*40,ULT-PASSWORD*8,ULT_OPTIONS*4,

 +ULT_CONTEXT*4,ULT_LVCONTEXT*4

 PARAMETER(ULT_CONTROL_LEN=100)

 CHARACTER*(ULT_CONTROL_LEN) ULT_CONTROL

 EQUIVALENCE (ULT_CONTROL(1:30),ULT_OBJECT_NAME(1:30)),

 +(ULT_CONTROL(31:36),ULT_OPERATION(1:6)),(ULT_CONTROL(37:37),

 +ULT_FSI(1:1)),(ULT_CONTROL(38:38),ULT_VSI(1:1)),

 +(ULT_CONTROL(39:40),ULT_FILLER(1:2)),(ULT_CONTROL(41:80),

 +ULT_MESSAGE(1:40)),(ULT_CONTROL(81:88),ULT_PASSWORD(1:8)),

 +(ULT_CONTROL(89:92),ULT_OPTIONS(1:4)),(ULT_CONTROL(93:96),

 +ULT_CONTEXT(1:4)),(ULT_CONTROL(97:100),ULT_LVCONTEXT(1:4))

 CHARACTER*14 ULT_DATE_STAMP

 DATA ULT_DATE_STAMP/'19831114143849'/

BASIC
! RDM INCLUDE ULT-CONTROL

RECORD ULT_CONTROL_REC

STRING ULT_OBJECT_NAME = 30, ULT_OPERATION = 6,

 ULT_FSI = 1,ULT_VSI = 1, ULT_FILLER = 2,ULTL_MESSAGE = 40,

 ULT_PASSWORD = 8, ULT_OPTIONS = 4, ULT_CONTEXT = 4,
ULT_LVCONTEXT = 4

END RECORD

DECLARE ULT_CONTROL_REC ULT_CONTROL

EXTERNAL SUB CSVIPLVS, CSVBERROR

DECLARE STRING CONSTANT ULT_DATE_STAMP = '19840830161953'

! RDM ON ERROR

! GOTO 999

! END ERROR-HANDLER

Chapter 5 Coding RDM program statements (VMS)

166 P25-0240-49

Coding program logic statements
This section presents the program logic statements in alphabetical order.
In COBOL they are referred to as Procedure Division statements.

COMMIT
Use COMMIT to issue a COMMIT to the Physical Data Manager (PDM).

COBOL

COMMIT.

FORTRAN

COMMIT

BASIC

RDM COMMIT

General considerations

♦ COMMIT makes the changes to the database (INSERT, DELETE,
UPDATE) permanent. RESET instructs SUPRA Server to perform
the standard error recovery procedure for the previous RDML
requests—to undo all database changes made by this task since the
most recent COMMIT.

♦ Since the PDM issues a RESET and SIGN-OFF on any program that
disappears with out signing off—it abended or someone stopped it,
always code a COMMIT in your program. This ensures that any
changes made by your program will be permanent even if the
program disappears.

Coding program logic statements

Programming Guide 167

Examples COMMIT identifies the recovery point of the task which just completed.

COBOL
*COMMIT.

 MOVE "LVC---" TO ULT-OPERATION

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

FORTRAN
C COMMIT

 ULT_OPERATION='LVC---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR (ULT_CONTROL)

END IF

BASIC
! RDM COMMIT

ULT_CONTROL::ULT_OPERATION="LVC---"

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 GOTO 999

END IF

Chapter 5 Coding RDM program statements (VMS)

168 P25-0240-49

DELETE
Use DELETE to remove a row from the database.

Your DBA may not allow you to perform deletes.

COBOL

DELETE [ALL] view-name.

FORTRAN

DELETE [ALL] view-name

BASIC

RDM DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows depending on the logical keys specified by the
preceding GET for this view.

Consideration This statement uses the parameters of the GET issued just before the
DELETE.

view-name

Description Required. Specifies the valid, open view you want to delete.

Coding program logic statements

Programming Guide 169

General considerations
♦ DELETE removes the entire current row.

♦ Use DELETE ALL with extreme caution.

♦ DELETE ALL deletes all rows having the same key values as
specified by the USING clause in the most recent GET.

♦ DELETE ALL removes all rows in the view if the most recent GET
had no qualifying USING clause.

♦ DELETE ALL does not commit, so the maximum number of rows
which may be deleted at once depends on the size of the task log
and on the maximum number of held rows allowed by the database.
If you attempt to delete more than this number of rows, you receive
an X status. Instead of doing a DELETE ALL, you may program a
loop containing periodic commits.

♦ DELETEs are not performed if data integrity is compromised—you
may not delete a customer record until you delete all outstanding
orders for that customer.

♦ When a DELETE request has failed with a status of X, perform a
RESET to ensure database integrity. If you provide an error handling
paragraph which does not RESET following an X status on DELETE,
then it is possible that only part of the modification is done.

♦ (COBOL only) The COBOL preprocessor recognizes DELETE as an
RDM request on two occasions: (1) when a valid view name follows
DELETE, and (2) when ALL follows DELETE.

1. If you use any other DELETE statement than the above two, a
warning message states that the preprocessor skipped the
statement and assumed it to be COBOL. The preprocessor
gives the DELETE statement to the COBOL compiler as is, and
does not generate code to handle the statement because it was
not considered a legal RDM request.

2. When DELETE is followed by ALL, the view specified is either
valid or invalid. If it is a valid request, the COBOL preprocessor
generates code to handle the request. If the request is invalid,
the preprocessor generates an error message in the first listing
and comments the DELETE statement out to the COBOL
compiler.

Chapter 5 Coding RDM program statements (VMS)

170 P25-0240-49

Examples COBOL

The following example deletes the one occurrence of SAMPLE-VIEW
based on the value of KEY1.
GET SAMPLE-VIEW USING KEY1.

DELETE SAMPLE-VIEW.

This example deletes all user view rows dependent on the value in KEY1.
GET SAMPLE-VIEW USING KEY1.

DELETE ALL SAMPLE-VIEW.

This has the same effect as the following set of statements:
 GET FIRST SAMPLE-VIEW USING KEY1.

MORE.

 DELETE SAMPLE-VIEW.

 GET NEXT SAMPLE-VIEW USING KEY1.

 NOT FOUND GO TO DONE.

 GO TO MORE.

DONE.

FORTRAN and BASIC

The following example deletes one occurrence of SAMPLE-VIEW:

FORTRAN
DELETE PART_COMP

BASIC
RDM DELETE TEST6E

Coding program logic statements

Programming Guide 171

Example output FORTRAN
ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVD---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP)

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

BASIC
ULT_CONTROL::ULT_OBJECT_NAME="TEST6E"

 ULT_CONTROL::ULT_OPERATION='LVD---'

 CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6E BY REF,

 ULT_DATE_STAMP BY REF,TEST6E_ULT BY REF)

 IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 CALL CSVBERROR(ULT_CONTROL)

 END IF

This example deletes all user view rows dependent on the key values in
the last GET statement:
FORTRAN
DELETE ALL PART_COMP

BASIC
RDM DELETE ALL TEST6E

Example output FORTRAN
ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVD--*'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP)

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

BASIC
ULT_CONTROL::ULT_OBJECT_NAME="TEST6F"

 ULT_CONTROL::ULT_OPERATION="LVD--*"

 CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6F BY REF,

 ULT_DATE_STAMP BY REF,TEST6F_ULT BY REF)

 IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 CALL CSVBERROR(ULT_CONTROL)

 END IF

Chapter 5 Coding RDM program statements (VMS)

172 P25-0240-49

FORGET
Use FORGET to remove the specified mark from the list of marks in use
and free the storage allocated by a previously issued MARK.

COBOL

FORGET data-item

[NOT FOUND cobol-imperative-statement

[ELSE cobol-imperative-statement]].

FORTRAN

FORGET data-item

[NOT FOUND sequence-of-fortran-statements

[ELSE sequence-of-fortran-statements]].

BASIC

RDM FORGET data-item

[NOT FOUND sequence-of-basic-statements

[ELSE sequence-of-basic-statements]].

Coding program logic statements

Programming Guide 173

data-item

Description Required. Specifies what mark information RDM should forget.

Format Must follow data item naming standards for the applicable language.

Considerations

♦ Define the mark field data item with the following:

- COBOL PIC X(4).

- FORTRAN CHARACTER*4

- BASIC STRING=4

♦ (COBOL only) Define the data item in the Data Division of the
program.

♦ The data item must contain information returned by a previously
issued MARK.

NOT FOUND cobol-imperative-statement

NOT FOUND sequence-of-fortran-statements

NOT FOUND sequence-of-basic-statements

Description Optional. Indicates what RDM should do if the mark information cannot
be released.

Consideration A mark value might not be found by RDM if one of the following
conditions is true:

♦ A previous FORGET or RELEASE already removed the mark.

♦ A MARK has never been done on the data item.

♦ The marked data item was changed by your program.

Chapter 5 Coding RDM program statements (VMS)

174 P25-0240-49

ELSE cobol-imperative-statement

ELSE sequence-of-fortran-statements

ELSE sequence-of-basic-statements

Description Optional. Indicates what RDM should do if the mark information release
is done.

Consideration Program control passes to the next statement if you do not specify an
ELSE clause.

General considerations

♦ Once you issue a FORGET, RDM releases the indicated mark and
you cannot regain it without issuing a new MARK.

♦ Release unwanted marks to maintain performance.

Coding program logic statements

Programming Guide 175

GET
Use GET to retrieve a row from the indicated view.

COBOL

GET

NEXT
LAST
SAME
FIRST
PRIOR

 [FOR UPDATE] USING [. . .]
AT

























view - name
data - item data - item

data - item
1 9

[NOT FOUND cobol-imperative-statement]

[ELSE cobol-imperative-statement]

Chapter 5 Coding RDM program statements (VMS)

176 P25-0240-49

NEXT
LAST
SAME
FIRST
PRIOR



















Description Optional. Indicates the order of retrieval of rows.

Default NEXT

Options NEXT Retrieves the next row with the specified keys. If you do
not supply keys, RDM returns the next row in the view. If
no current row exists, GET NEXT operates as GET
FIRST.

LAST Retrieves the last row in the view with the specified keys.
If no keys are given, RDM returns the last row.

SAME Retrieves the row just accessed if a current row exists. If
no current row exists, RDM signals a NOT FOUND
condition.

FIRST Retrieves the first row in the view with the specified keys.
If no keys are given, RDM returns the first row.

PRIOR Retrieves the previous row with the specified keys. If no
current row exists, GET PRIOR operates as GET LAST.

Considerations

♦ The order in which RDM returns rows from a view by the GET FIRST
and GET NEXT defines a sequence on the rows in a view. GET
LAST and GET PRIOR return the rows from the view in reverse
order. If using indices to retrieve the view, the secondary key must
be defined as REVERSE or BOTH for your program to use GET
LAST and GET PRIOR. If the secondary key is not defined as such,
then RDM returns an error when a program attempts GET LAST or a
GET PRIOR. If you are not using indices to retrieve the view, you
can do GET LAST or GET FIRST on a related data set, but not on a
primary data set.

♦ If you do not check for a NOT FOUND, a series of GET NEXTs loops
back to the first row and continues processing.

Coding program logic statements

Programming Guide 177

view-name

Description Required. Names the view you want to use.

Format Must be a valid view name or the user-view-name if you specified one on
the INCLUDE.

FOR UPDATE

Description Optional. Allows you to lock out other users’ modifications to the row you
are retrieving.

Considerations

♦ GET...UPDATE retrieves the row, but does not hold it until later in the
program when it does the UPDATE. Use this method to minimize
row holding.

♦ GET FOR UPDATE...UPDATE retrieves and holds the row from the
start. By the time the program updates the row, it will have held it for
some time. This method ensures the success of the update by
preventing any other program from updating the row. However, it
can impair performance if used on rows which are accessed by many
programs. Use this method if the update must succeed.

♦ GET FOR UPDATE... holds the row without updating it. This method
ensures that other programs cannot update the row while you are
reading it but will impact performance if used on rows which are
accessed by many programs. Use this method to ensure that the
row remains stable while you are reading it.

Chapter 5 Coding RDM program statements (VMS)

178 P25-0240-49

USING data-item1[...data-item9]

Description Optional. Specifies the key values to use for accessing the view.

Format The data items must be part of a valid view.

Considerations

♦ Do not use the USING phrase with GET SAME or an AT phrase.

♦ The number of keys specified in the GET statement must not exceed
the number of keys in the data item list.

♦ Any trailing omitted keys are treated as generic keys. Using generic
keys allows both direct access to a row and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
data item, as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase must correspond to
the order of key declarations (left to right) in your user view (see the
INCLUDE statement, “INCLUDE view-data” on page 153). You
cannot omit a key which occurs between two keys you want to
specify.

♦ If a given key has only one row and you use that key with GET
USING to access the row a second time, you receive a message
indicating that there are no more occurrences with this logical key
specification. In order to access the same row, use GET SAME.

♦ Up to nine data items may be used for the logical key.

♦ If a data item is a secondary key, you may omit characters from the
right substituting the wildcard character * or =. See “Retrieving rows
using partial keys” on page 127. If using compound secondary keys,
you may omit characters from the right of the last key only
substituting one of the wildcard characters. You cannot use a
wildcard character in the middle of a key data item.

Coding program logic statements

Programming Guide 179

AT data-item

Description Optional. Repositions a view based on the mark obtained by a previous
MARK.

Format Must be defined with a picture clause of PIC X(4).

Considerations

♦ The data item is a storage location which contains information
generated by a previous MARK.

♦ You may not use the USING and AT phrases in the same GET.

♦ You may not specify the AT phrase in a statement using the FIRST,
NEXT, PRIOR, LAST, or SAME positional qualifiers.

NOT FOUND cobol-imperative-statement

Description Optional. Indicates what RDM should do if it does not find data.

Considerations

♦ Data might not be found for one or more of the following reasons:

- No data is available for a keyed GET.

- All the existing data is exhausted for a generic GET.

- All the data available to the user view is exhausted for a non-
keyed GET.

♦ If you do not check for a NOT FOUND, a series of GET NEXTs loops
back to the first row and continues processing.

♦ If the row you are retrieving may not exist, you should include the
NOT FOUND statement. If you do not include it, RDM enters its own
error handler. For more information on error handlers, see “Handling
error conditions” on page 141.

ELSE cobol-imperative-statement

Description Optional. Indicates what RDM should do if it finds good data.

Consideration If you do not specify an ELSE statement, program control passes to the
next statement.

Chapter 5 Coding RDM program statements (VMS)

180 P25-0240-49

Examples The following statement retrieves the first row in the view PROD that
matches the supplied key value. The column PROD-TRAN contains the
key value used for retrieving the row:
GET PROD USING PROD-TRAN.

This statement retrieves the view using the key PROD-TRAN. The
USING phrase indicates that RDM used a key to retrieve the view:
GET PROD FOR UPDATE USING PROD-TRAN.

This statement retrieves a view that a person marked and saved for later
access:
GET PROD AT PROD-MARK.

Repeatedly issuing this request retrieves all PROD rows in the view:
GET PROD.

This request retrieves the row for update denying other processes update
or delete access until a COMMIT or RESET is issued:
GET PROD FOR UPDATE.

The following statements retrieve rows in the specified order—NEXT,
LAST, SAME, FIRST, and PRIOR:
GET NEXT PROD.

GET LAST PROD.

GET SAME PROD.

GET FIRST PROD.

GET PRIOR PROD.

The following statements illustrate the NOT FOUND and ELSE clauses:
GET PROD USING PROD-TRAN.

 NOT FOUND GO TO PROD-NOT-FOUND.

 ELSE DISPLAY PROD-TRAN "Retrieved Successfully".

Coding program logic statements

Programming Guide 181

These statements generate the following:
* GET PROD USING PROD-TRAN.

 MOVE "PROD " TO ULT-OBJECT-NAME

 MOVE PROD-TRAN

 TO PROD-NO

 OF PROD

 MOVE "LVG-R1" TO ULT-OPERATION

 CALL "CSVIPLVS" USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

IF ULT-FSI NOT = "*" and ULT-FSI NOT = "N"

 PERFORM ERROR-ON-PROD

 ELSE IF ULT-FSI = "N"

 GO TO PROD-NOT-FOUND

ELSE DISPLAY PROD-TRAN "Retrieved successfully".

Chapter 5 Coding RDM program statements (VMS)

182 P25-0240-49

FORTRAN and BASIC

GET

NEXT
LAST
SAME
FIRST
PRIOR

 [FOR UPDATE] AT
USING , . . .

























view - name mark - variable
key - expression

[NOT FOUND

sequence-of-statements]

[ELSE

sequence-of-statements]

END IF

Coding program logic statements

Programming Guide 183

NEXT
LAST
SAME
FIRST
PRIOR



















Description Optional. Indicates the order of row retrieval.

Default NEXT

Options NEXT Retrieves the next row with the specified keys. If you do
not supply keys, RDM returns the next row in the view. If
no current row exists, GET NEXT operates as GET
FIRST.

LAST Retrieves the last row in the view with the specified keys.
If no keys are given, RDM returns the last row.

SAME Retrieves the row just accessed if a current row exists. If
no current row exists, RDM signals a NOT FOUND
condition.

FIRST Retrieves the first row in the view with the specified keys.
If no keys are given, RDM returns the first row.

PRIOR Retrieves the previous row with the specified keys. If no
current row exists, GET PRIOR operates as GET LAST.

Considerations

♦ The order in which RDM returns rows from a view by the GET FIRST
and the GET NEXT functions defines a sequence on the rows in a
view. GET LAST and GET PRIOR return the rows from the view in
reverse order. If using indices to retrieve the view, the secondary key
must be defined as REVERSE or BOTH for your program to use
GET LAST and GET PRIOR. If the secondary key is not defined as
such, then RDM returns an error when a program attempts GET
LAST or a GET PRIOR. If you are not using indices to retrieve the
view, you can do GET LAST or GET FIRST on a related data set, but
not on a primary data set.

♦ If you do not check for a NOT FOUND, a series of GET NEXTs loops
back to the first row and continues processing.

Chapter 5 Coding RDM program statements (VMS)

184 P25-0240-49

view-name

Description Required. Names the view you want to use.

Format Must be a valid view name or the user-view-name if one was specified on
the INCLUDE statement.

FOR UPDATE

Description Optional. Allows you to lock out other users’ modifications to the row you
are retrieving.

Considerations
♦ GET...UPDATE retrieves the row, but does not hold it until later in the

program when it does the UPDATE. Use this method to minimize
row holding.

♦ GET FOR UPDATE...UPDATE retrieves and holds the row from the
start. By the time the program updates the row, it will have held it for
some time. This method ensures the success of the update by
preventing any other program from updating the row. However, it
can impair performance if used on rows which are accessed
concurrently by many programs. Use this method if the update must
succeed.

♦ GET FOR UPDATE... holds the row without updating it. This method
ensures that other programs cannot update the row while you are
reading it but will impact performance if used on rows which are
accessed by many programs. Use this method to ensure that the row
remains stable while you are reading it.

AT mark-variable

Description Optional. Repositions a view based on the mark obtained by a previous
MARK.

Format FORTRAN Must be a CHARACTER*4 data item.
BASIC Must be a STRING=4 data item.

Considerations
♦ The variable is a storage location which contains information

generated by a previous MARK.

♦ Do not use the USING and AT phrases in the same GET.

♦ Do not specify AT in a statement using the FIRST, NEXT, PRIOR,
LAST, or SAME positional qualifiers.

Coding program logic statements

Programming Guide 185

USING key-expression,...

Description Optional. Specifies the key values to use for accessing the view.

Format Any valid FORTRAN or BASIC expression which may be assigned to the
required key data item.

Considerations

♦ Do not use the USING phrase with a GET SAME or an AT.

♦ The number of keys specified in the GET must not be more than the
number of keys in the data item list.

♦ Any trailing omitted keys are treated as generic keys. Using generic
keys allows both direct access to a row and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
data item as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase must correspond to
the order of key declarations (left to right) in your user view (see the
INCLUDE statement, “INCLUDE view-data” on page 153). You
cannot omit a key which occurs between two keys you want to
specify.

♦ If a given key has only one row and you use that key with GET
USING to access the row a second time, you receive a message that
there are no more occurrences with this particular logical key
specification. In order to access this same row, use GET SAME.

♦ Up to nine data items may be used for the logical key.

♦ If you specify several values, separate them by commas.

♦ If using a secondary key, you may omit characters from the right
substituting one of the wildcard characters * or =. See “Retrieving
rows using partial keys” on page 127. If you specify a secondary key
consisting of more than one part, use the wildcard only on the
rightmost part of the last data item in the key.

Chapter 5 Coding RDM program statements (VMS)

186 P25-0240-49

NOT FOUND sequence-of-statements

Description Optional. Indicates what RDM should do if it does not find data.

Considerations

♦ NOT FOUND expands into an IF statement. Therefore, you must
place a matching END IF statement somewhere after it.

♦ NOT FOUND is only valid after a GET statement.

♦ Data might not be found for one or more of the following reasons:

- No data is available for a keyed GET.

- All the existing data is exhausted for a generic GET.

- All the data available to the user view is exhausted for a non-
keyed GET.

♦ If you do not check for a NOT FOUND, a series of GET NEXTs loops
back to the first row and continues processing.

♦ If you are unsure whether the row you are retrieving exists, include
the NOT FOUND statement. If you do not include it, RDM enters the
error handler.

ELSE sequence-of-statements

Description Optional. Indicates what RDM should do if good data is found.

Considerations

♦ If you do not specify an ELSE statement, program control passes to
the next statement.

♦ The ELSE statement is only valid after a NOT FOUND statement.

Coding program logic statements

Programming Guide 187

END IF

Description Required after a NOT FOUND statement.

Examples The following statement retrieves the first row in the view PART-COMP
that matches the supplied key value. The column PART_KEY contains
the key value used for retrieving the row:

FORTRAN
GET PART_COMP USING PART_KEY

BASIC
RDM GET PART_COMP USING PART_KEY

This statement retrieves a row marked and saved for later access:

FORTRAN
GET PART_COMP AT PART_MARK

BASIC
RDM GET PART_COMP AT PART_MARK

Repeatedly issuing this request retrieves all PART_COMP rows in the
view:

FORTRAN
GET PART_COMP

BASIC
RDM GET PART_COMP

Chapter 5 Coding RDM program statements (VMS)

188 P25-0240-49

This request retrieves the row for update, denying other processes
update of delete access until COMMIT or RESET is issued.

FORTRAN
GET PART_COMP FOR UPDATE

BASIC
RDM GET PART_COMP FOR UPDATE

The following statements retrieve rows in the specified order—NEXT,
LAST, SAME, FIRST, PRIOR:

FORTRAN
 GET NEXT PART_COMP

 GET LAST PART_COMP

 GET SAME PART_COMP

 GET FIRST PART_COMP

 GET PRIOR PART_COMP

BASIC
 RDM GET NEXT PART_COMP

 RDM GET LAST PART_COMP

 RDM GET SAME PART_COMP

 RDM GET FIRST PART_COMP

 RDM GET PRIOR PART_COMP

Coding program logic statements

Programming Guide 189

INSERT
Use INSERT to insert a new row into the view.

COBOL

INSERT

NEXT
LAST
FIRST
PRIOR





















−view name

[DUP KEY cobol-imperative-statement]

[ELSE cobol-imperative-statement].

FORTRAN and BASIC

RDM INSERT

NEXT
LAST
FIRST
PRIOR





















−view name

[DUP KEY sequence-of-statements]

[ELSE sequence-of-statements]

END IF

Chapter 5 Coding RDM program statements (VMS)

190 P25-0240-49

NEXT
LAST
FIRST
PRIOR





















Description Optional. Specifies where RDM should insert the row relative to the
current user view position.

Default NEXT

Options NEXT Places the row after the current row, provided the keys
are the same. If the keys are different, or if no current
row exists, INSERT NEXT operates as INSERT LAST.

LAST Places the row in the view so that a subsequent GET
LAST using the same key values retrieves it.

FIRST Places the row in the view so that subsequent GET
FIRST using the same key values retrieves it.

PRIOR Places the row in the view before the current row,
provided the keys are the same. If the key values are
different, or if there is no current row, INSERT PRIOR
operates as INSERT FIRST.

Considerations

♦ If the DBA specified ordering in the view definition or if the PDM does
not allow program control of ordering, RDM ignores the specification
on the INSERT.

♦ When an INSERT request has failed with a status of X, you must
perform a RESET to ensure database integrity. If you provide an
error handling paragraph which does not RESET following an X
status on INSERT, then it is possible that RDM performed only part
of the modification (this may result in logical corruption).

view-name

Description Required. Names the valid, open view in which you want the rows
inserted.

Coding program logic statements

Programming Guide 191

DUP KEY cobol-imperative-statement

DUP KEY sequence-of-fortran-statements

DUP KEY sequence-of-basic-statements

Description Optional. Indicates what RDM should do if the row you are inserting is
uniquely keyed and/or if the value of the keys you are inserting already
exists in the database.

Consideration If you are using FORTRAN or BASIC, the DUP KEY statement expands
into an IF statement. Therefore, you must place a matching END IF
somewhere after it.

ELSE cobol-imperative-statement

ELSE sequence-of-fortran-statements

ELSE sequence-of-basic-statements

Restriction Valid only after a DUP KEY statement.

Description Optional. Indicates what RDM should do if the INSERT succeeds.

Consideration If you do not specify ELSE clause, program control passes to the next
statement.

General consideration

 You must supply all keys and required columns in order for the INSERT
to be successful.

Chapter 5 Coding RDM program statements (VMS)

192 P25-0240-49

Examples The following examples show various ordering possibilities available for
use with INSERT:

COBOL
 INSERT NEXT PART-COMP.

 INSERT LAST PART-COMP.

 INSERT FIRST PART-COMP.

 INSERT PRIOR PART-COMP.

FORTRAN
 INSERT PART_COMP

 INSERT NEXT PART_COMP

 INSERT PRIOR PART_COMP

 INSERT FIRST PART_COMP

 INSERT LAST PART_COMP

BASIC
 RDM INSERT PART_COMP

 RDM INSERT NEXT PART_COMP

 RDM INSERT PRIOR PART_COMP

 RDM INSERT FIRST PART_COMP

 RDM INSERT LAST PART_COMP

Coding program logic statements

Programming Guide 193

This example illustrates the code the RDM precompiler generates when
you code DUP KEY and ELSE:

COBOL
* INSERT PROD DUP KEY PERFORM DUP-PROD.
 MOVE "LVI---" TO ULT-OPERATION
 MOVE "PROD " TO ULT-OBJECT-NAME
 CALL "CSVIPLVS" USING ULT-CONTROL,
 LUV-PROD,
 ULT-DATE-STAMP,
 ULT-PROD
 IF ULT-FSI NOT = "*" AND ULT-FSI NOT = "N"
 PERFORM ERROR-ON-PROD
 ELSE IF ULT-FSI = "N"
 PERFORM DUP-PROD.

FORTRAN
C INSERT PART_COMP
 ULT_OBJECT_NAME='PART_COMP'
 ULT_OPERATION='LVI---'
 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),
 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))
C DUP KEY
 IF ((ULT_FSI.NE.'*') .AND. (ULT_FSI.NE.'N')) THEN
 CALL CSVDERROR(ULT_CONTROL)
 ELSE IF (ULT_FSI.EQ.'N') THEN
 GO TO 500
 ELSE
 TYPE *,'Record inserted successfully.'
 END IF

BASIC
! RDM INSERT FIRST TEST6G
ULT_CONTROL::ULT_OBJECT_NAME="TEST6G"
ULT_CONTROL::ULT_OPERATION="LVIFU-"
CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,
ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)
! DUP KEY
IF ((ULT_CONTROL::ULT_FSI[]"*") AND (ULT_CONTROL::ULT_FSI[]"N"))
THEN

 PRINT ULT_CONTROL::ULT_FSI
 GOTO 999
END IF
IF (ULT_CONTROL::ULT_FSI="N") THEN
GOTO 900
END IF

Chapter 5 Coding RDM program statements (VMS)

194 P25-0240-49

MARK
Use MARK to record the current position of the view established by the
most recent GET, UPDATE, or INSERT.

COBOL

MARK view-name AT data-item.

FORTRAN

MARK view-name AT mark-variable

BASIC

RDM MARK view-name AT mark-variable

view-name

Description Required. Names the valid, open view you wish to mark.

AT data-item or AT mark-variable

Description Required. Specifies where RDM should save the MARK information.

Format Define the data item with PIC X(4) (COBOL), CHARACTER*4
(FORTRAN) or STRING=4 (BASIC). data item.

Considerations

♦ COBOL. You must define this data item in the Data Division of your
program and initialize it to spaces before use.

♦ FORTRAN. Declare the mark variable as CHARACTER*4 and
initialize it to spaces.

♦ BASIC. Declare the mark variable as STRING=4 and initialize it to
spaces.

Coding program logic statements

Programming Guide 195

General considerations

♦ The AT clause in a GET (see “GET” on page 176, under the AT data-
item parameter description) repositions the view at the position set by
the MARK.

♦ You may create any number of MARKs for a view. A MARK might
require several hundred bytes of internal memory if the view
accesses several files with long keys.

♦ For efficient performance, use FORGET to remove marks that are no
longer needed.

Example COBOL

In this example RDM marks the current position of the user view PROD
and saves it at PROD-MARK:
WORKING-STORAGE SECTION.

 .

 .

 .

01 PROD-MARK PIC X(4).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MARK PROD AT PROD-MARK.

 .

 .

 .

 GET PROD AT PROD-MARK.

 .

 .

 .

Chapter 5 Coding RDM program statements (VMS)

196 P25-0240-49

FORTRAN

In this example the current position of the user view PART_COMP is
marked and saved at PART_MARK:
C MARK PART_COMP AT PART_MARK

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVM---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE

 PART_MARK=ULT_CONTEXT

 END IF

BASIC

In this example the current position of the user view TEST1 is marked
and saved at TEST1_MARK:
! RDM MARK TEST1 AT TEST1_MARK

ULT_CONTROL::ULT_OBJECT_NAME="TEST1"

ULT_CONTROL::ULT_CONTEXT=TEST1_MARK

ULT_CONTROL::ULT_OPERATION="LVM---"

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

CALL CSVBERROR(ULT_CONTROL)

ELSE

TEST1_MARK=ULT_CONTROL::ULT_CONTEXT

END IF

Coding program logic statements

Programming Guide 197

RELEASE
Use RELEASE to close a specific view or all views that have been
opened, and to release the occupied storage.

COBOL

RELEASE [view-name].

FORTRAN

RELEASE

BASIC

RDM RELEASE

view-name (COBOL only)

Description Optional. Specifies the valid, open view RDM should release.

Consideration If you omit this parameter, RDM releases all of your opened views.

General considerations

♦ RELEASE is helpful when you are accessing multiple views.
However, if used without a view name, it removes all marks (see
“MARK” on page 195) and loses the current position in all views
being used.

♦ If using COBOL, always follow a RELEASE with a period. If the
COBOL preprocessor finds anything other than a period, it issues a
warning message stating that it has skipped the statement and
assumed it to be a COBOL statement.

Chapter 5 Coding RDM program statements (VMS)

198 P25-0240-49

Examples These examples indicate that RDM should close all opened views.

COBOL
*

* RELEASE.

 MOVE "LVR---" TO ULT-OPERATION

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

FORTRAN
C RELEASE

 ULT_OPERATION='LVR---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

BASIC
! RDM RELEASE

ULT_CONTROL::ULT_OPERATION="LVR---"

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 GOTO 999

END IF

Coding program logic statements

Programming Guide 199

RESET
Use RESET to undo any UPDATE, DELETE, or INSERT statements
issued since the most recent COMMIT.

COBOL

RESET.

FORTRAN

RESET

BASIC

RDM RESET

General considerations

♦ If you do not supply an error handler and an error occurs, RDM
automatically issues a RESET request.

♦ If the database has Task Level Recovery, RESET backs out changes
since the most recent COMMIT.

Chapter 5 Coding RDM program statements (VMS)

200 P25-0240-49

Examples These examples indicate that a RESET is to be performed.

COBOL
*RESET.

 MOVE "LVA---" TO ULT-OPERATION

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

FORTRAN
C RESET

 ULT_OPERATION='LVA---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

BASIC
! RDM RESET

ULT_CONTROL::ULT_OPERATION="LVA---"

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 GOTO 999

END IF

Coding program logic statements

Programming Guide 201

SIGN-OFF
Use SIGN-OFF to inform RDM that access to the database is no longer
desired.

COBOL

SIGN-OFF.

FORTRAN

SIGN-OFF

BASIC

RDM SIGN-OFF

General considerations

♦ SIGN-OFF also releases all storage areas that were acquired to
service RDML requests.

♦ Issue a SIGN-OFF at the end of every application program.

♦ SIGN-OFF also causes a COMMIT.

Chapter 5 Coding RDM program statements (VMS)

202 P25-0240-49

Example In this example, the user signs off the system.

COBOL
*SIGN-OFF.

 MOVE "LVC---" TO ULT-OPERATION

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

 MOVE 'LVF---' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

FORTRAN
C SIGN-OFF

 ULT_OPERATION='LVC---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

 ULT_OPERATION='LVF---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

!

Coding program logic statements

Programming Guide 203

BASIC
! RDM SIGN-OFF

ULT_CONTROL::ULT_OPERATION="LVC---"

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 GOTO 999

END IF

ULT_CONTROL::ULT_OPERATION="LVF---"

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]"*") THEN

 GOTO 900

END IF

Chapter 5 Coding RDM program statements (VMS)

204 P25-0240-49

SIGN-ON
Use SIGN-ON to identify the user to RDM.

COBOL

SIGN-ON user-name [password].

FORTRAN

SIGN-ON user-name [,password]

BASIC

RDM SIGN-ON user-name [password]

user-name

Description Required. Indicates the name of the user.

Format Must be assigned in the Directory.

Consideration (COBOL only) Specify the user name as a COBOL data item name and
not a literal.

password

Description Optional. Indicates the user’s password. You must supply the password
if the user has been assigned a password in the Directory.

Format Must be assigned in the Directory.

Consideration If you specify a password, it must be a COBOL data item name and not a
literal.

Coding program logic statements

Programming Guide 205

General considerations

♦ A SIGN-ON implicitly issues a release request and frees any
previously allocated internal storage space.

♦ A CSV_SETUP_REALM routine is available to programs that access
SUPRA Server databases through RDM. Use this routine to specify
the mode in which RDM should open each data set. Data sets are
usually opened in SHRE mode. You can specify either PRIV mode,
preventing any other user from accessing the data set, or RDLY
mode, preventing any modifications to the data set by this process.

You may call the CSV_SETUP_REALM routine before the program
issues a SIGN-ON. Below is an example of the call, where
ACCESS-CONTROL is the name of a data area within the program
that contains the access-control specification. The access-control
parameter must be passed by reference:

 COBOL
 CALL "CSV_SETUP_REALM" USING ACCESS-CONTROL

 FORTRAN
 CALL CSV_SETUP_REALM(%REF(ACCESS-CONTROL))

 BASIC
 CALL CSV_SETUP_REALM(ACCESS-CONTROL BY REF)

Chapter 5 Coding RDM program statements (VMS)

206 P25-0240-49

♦ The format of the contents of the access-control parameter is the
same as that of the access-control parameter of the SINON
command, described in “SINON” on page 332. An example of the
format for the REALM specification follows:

 COBOL
 PROGNAMEDBNAMEACCESS..DSETMODE....[DSETMODE....]END.

 FORTRAN and BASIC
 PROGNAMEDBNAMEACCESS..DSETMODE....[DSETMODE....]END.

PROGNAME The 8-character program name
DBNAME The 6-character name of the compiled

database description
ACCESS The access-mode of the program; either

RDONLY or UPDATE
.. A 2-space filler, reserved
DSET A 4-character data set name
MODE The 4-character data set mode: SHRE, PRIV

or RDLY
.... Four spaces reserved for data set status

codes
END. Indicates the end of the parameter list

Coding program logic statements

Programming Guide 207

Examples COBOL

This example illustrates the use of the SIGN-ON command. Note that
you code the MOVE and SIGN-ON statements and the remainder is code
that the preprocessor generates.
 MOVE "JAMES-SMITH" TO USER-ID.

* SIGN-ON USER-ID.

 MOVE "LVS---" TO ULT-OPERATION

 MOVE USER-ID

 TO ULT-OBJECT-NAME

 MOVE SPACES TO ULT-PASSWORD

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL.

This example illustrates the use of the SIGN-ON command with a
password.
*

* SIGN-ON USER-ID USER-PASSWORD.

 MOVE "LVS---" TO ULT-OPERATION

 MOVE USER-ID

 TO ULT-OBJECT-NAME

 MOVE USER-PASSWORD TO ULT-PASSWORD

 CALL "CSVIPLVS" USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = "*"

 PERFORM ERROR-ON-ULT-CONTROL.

Chapter 5 Coding RDM program statements (VMS)

208 P25-0240-49

FORTRAN

In this example, ‘JADOE’ signs on to the system.
C SIGN-ON 'JADOE',PASSWORD

 ULT_OBJECT_NAME='JADOE'

 ULT_PASSWORD='PASSWORD'

 ULT_OPERATION='LVS---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

BASIC

In this example, ‘JADOE’ signs on to the system.
! RDM SIGN-ON 'JADOE'

ULT_CONTROL::ULT_OBJECT_NAME='JADOE'

ULT_CONTROL::ULT_PASSWORD='

ULT_CONTROL::ULT_OPERATION='LVS--'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL
BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI[]'*') THEN

 GOTO 999

END IF

Coding program logic statements

Programming Guide 209

UPDATE
Use UPDATE to update data item values in the database.

Your DBA may not allow you to perform an update.

COBOL

UPDATE view-name.

FORTRAN

UPDATE view-name

BASIC

RDM UPDATE view-name

view-name

Description Required. Names the valid, open view you wish to update.

Chapter 5 Coding RDM program statements (VMS)

210 P25-0240-49

General considerations

♦ Before performing an UPDATE, use GET to access the view.

♦ Use GET FOR UPDATE before using UPDATE when computing a
new value for a row (incrementing a counter, etc.). If you are using
UPDATE to place a value in a row, you do not need to issue GET
FOR UPDATE which is not dependent on the values already present.

♦ You cannot update a view key. By altering the view key, you actually
request repositioning of the view, not modification of the current row.
To update a view key, you must first delete the old row, and then
insert a new one.

♦ Follow an X failure status from an UPDATE request by a RESET to
ensure database integrity. If you provide an error-handling paragraph
which does not RESET following an X status on DELETE, then it is
possible that RDM performed only part of the modification (this may
result in logical corruption).

Coding program logic statements

Programming Guide 211

Example COBOL

The statement UPDATE PROD indicates that the view PROD should be
updated.
GET PROD USING ---

MOVE NEW-DATA TO PRODUCT-FIELD

UPDATE PROD.

 .

 .

 .

FORTRAN

The statement UPDATE PART_COMP indicates that the view
PART_COMP should be updated.

Input
UPDATE PART_COMP

Output
ULT_OBJECT_NAME='PART_COMP'

ULT_OPERATION='LVU---'

CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

+%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

IF (ULT_FSI.NE.'*') THEN

CALL CSVDERROR(ULT_CONTROL)

END IF

BASIC

The statement RDM UPDATE TEST6D indicates that the view TEST6D
should be updated:

Input
RDM UPDATE TEST6D

Output
ULT_CONTROL::ULT_OBJECT_NAME="TEST6D"

ULT_CONTROL::ULT_OPERATION="LVU---"

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6D BY REF,

ULT_DATESTAMP BY REF,TEST6D_ULT BY REF)

CALL CSVBERROR(ULT_CONTROL)

END IF

Chapter 5 Coding RDM program statements (VMS)

212 P25-0240-49

6
Understanding Physical Data
Manipulation Language (PDML)

To access and manipulate a database from an application program, you
can use Physical Data Manipulation Language (PDML). It uses the
Physical Data Manager (PDM) component of SUPRA Server, providing
access to your physical databases. You use it to perform such functions
as adding, reading and deleting primary and related records.

When using PDML, the first command your program must execute is a
SINON. Then you can perform other activities: access, search, update
data sets, and so on. If you update data sets, do periodic COMITs to
flush buffers and free resources held by the task. The last command your
program must execute (when your business function is complete) is a
SINOF. See the table under “Table of PDML commands” on page 229 for
a complete description of each PDML command.

The DBA adds the data set descriptions into the Directory and assigns
names to each field in a record. Your program uses those names in the
data-list parameter of most PDML commands. A data list can name
some or all of the fields in a record, in any order.

On a read, when the PDM returns control to the application (after
servicing the command), the data-area parameter contains the contents
of the data fields named in the data-list, in the same order.

The PDM locates each database record by its relative record number
(RRN). Many PDML commands return an RRN as one of their outputs.
Often, your program must pass this RRN to a subsequent DML
command as an input parameter.

 Programming Guide 213

Opening/closing data sets
Before any application can process a data set, the data set must be
open. You can open a data set in two ways:

♦ Specify an entry in the realm segment of the SINON access-control
parameter (see “SINON” on page 332).

♦ Allow the PDM to dynamically open the data set when you the first
PDML command for that data set.

If you specify an entry in the realm segment of the SINON access-control
parameter, you have either read only or update access to the data set. If
you open the data set with read only access, the PDM returns an error
status code to all DML commands issued from your program that attempt
to update the data set.

If you allow the PDM to dynamically open the data set when you issue the
first command, the PDM will open the data set for shared update access
unless the data set is open for update access by another database. For
valid combinations of modes see “SINON” on page 332.

You can not change a data set’s mode while it is opened.

Regardless of how you opened the data set or in what mode, your
program need not be concerned with closing the data set. When your
program issues the SINOF PDML command the PDM logically closes the
data sets which the application was using. A data set is only physically
closed when the last task accessing it issues a SINOF DML command.

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

214 P25-0240-49

Adding a primary record
Before your program can add a primary record, you must open the data
set named in the data set parameter in UPDATE mode. You use ADD-M
to add a record to a primary data set. The PDM locates a space for the
new record using the information in the control key parameter. The new
record is constructed using the information you place in the data list and
data area parameters. Data items not named in the data list are filled with
binary zeros in the added record. The PDM adds this record to the data
set, and (in VMS only) performs maintenance to all secondary keys that
are populated for this data set. See “ADD-M” on page 238 for more
information on using ADD-M.

Reading a primary record
When performing a read on a primary data set, you can navigate the data
set in three ways:

♦ A direct read reads one specific record, using the control key value of
READM to perform a direct read of a primary data set. You can
effect sequential processing by repeated reads, increasing or
decreasing the specified key.

♦ A serial read means repeated reads for records in the sequence they
are physically stored on the data set. For PDM data sets, this means
the returned records are in random order. Use serial reads for large
scale data set access or when the records to be retrieved are not
known uniquely by key. RDNXT is available for serial reads on PDM
data sets.

♦ A secondary key read processes the records in serial fashion, using
the order determined by the secondary key definition. For Index data
sets, the PDM reads records in key order. You can limit the reads to
certain records by using masking information. Note that secondary
keys may be defined for either primary or related data items.

Adding a primary record

Programming Guide 215

Use a repeated READX to perform a secondary key serial read of a data
set. Because all secondary keys are in either ascending or descending
character sequence or both, you can retrieve the records using either a
forward or reverse direction on the secondary key values. The first read
must use the keyword BEGN in the qualifier field. To alter the direction of
the read, specify the opposite direction keyword in options, and specify
REBD in the qualifier; this starts reading in the opposite direction. You
can start at the beginning or end of the index data set, or with a particular
secondary key. See “READX” on page 314 for more information on using
READX.

Use a repeated RDNXT command to perform a serial read of the data
set. You can start at the beginning of a data set and continue through it,
or start at a specified record and then continue. To start at the physical
beginning, use the keyword BEGN in the qualifier parameter. To start
processing with a specific record, use the control key (of the record
where you want the search to begin) in the qualifier parameter. Repeat
the RDNXT to continue to the end of data set. The PDM returns the data
of each record and its location (RRN). See “RDNXT” on page 289 for
more information on using RDNXT.

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

216 P25-0240-49

The following figure illustrates which record the PDM retrieves from a
data set (CUST) when you code the RDNXT qualifier parameter as
BEGN and when you use KEY=control key.

Portion of Request
Sequence Using Keyword

BEGN to Access All
Records in File

FUNCTION=RDNXT
FILE=CUST
DATA-LIST=CUSTCTRLEND.
QUALIFIER=BEGN

Portion of Request
Sequence Using Record's

Control Key to Begin
Accessing Records

FUNCTION=RDNXT
FILE=CUST
DATA-LIST=CUSTCTRLEND.
QUALIFIER=KEY=AB

Customer Purchase File (CUST)

AA 123 Remaining Data
Items/Linkpath

AB 012 Remaining Data
Items/Linkpath

RRN 1

(Record 3)

(Record 2)

(Record 4)

(Record 5)

(Record 7) (Record 8)

(Record 6)

Data returned to your program when the qualifier is set to:

Qualifier contents after
first RDNXT

Data area contents after
first RDNXT

BEGN KEY=control-key

1 6

AA AB

Reading a primary record

Programming Guide 217

You may want to add (ADD-M) records to or delete (DEL-M) records from
a primary data set while serially processing it with a RDNXT or
sequentially processing it with READX. Use caution, because your
application program may not have serial access to certain records after
the PDM performs the delete and add logic. For example, the current
record (retrieved serially) may have a synonym that has not been read. If
the PDM deletes the current record, the PDM automatically reorganizes
the data set and may physically move the synonym so it is unavailable for
the next or a subsequent serial access. To avoid this situation, you
should issue all ADD-Ms and DEL-Ms after serial processing is complete.
This technique ensures that all records are available for program
analysis. You can execute WRITM while processing a primary data set
with RDNXT because WRITM does not reorganize synonym chains.

Updating a primary record
Before you can update a primary record with WRITM, you should issue a
read command. In a multitask operating mode or when task logging is
active, you should issue a read (READM) with record holding to ensure
that another task cannot hold the record you are using. The PDM uses
the specified control key to locate the record to be updated. The PDM
then moves the data items (as specified in the data list) from the data
area to the corresponding sections in the record you want to update.

Deleting a primary record
Use DEL-M to delete a record from a primary data set. The PDM deletes
the record whose key is in the control key parameter from the data set
identified by the data set parameter. If you are running your program in a
multitask environment or if task logging is active, you should read
(READM) the record with record holding before you attempt to delete it.
You cannot delete the primary record if any related data set records are
linked to it. See “DEL-M” on page 276 for more information on using
DEL-M.

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

218 P25-0240-49

Adding a related record
Before your program can add a related record, you must open the data
set named in the data set parameter in UPDATE mode. You use ADDVC,
ADDVB, or ADDVA to add a record to a related data set. The new record
is constructed using the information you place in the data list and data
area parameters. Data items not named in the data list are filled with
binary zeros in the added record. The PDM adds this record to the data
set, and performs structural maintenance to the linkpaths for the data set.
In addition, the PDM performs maintenance to all secondary keys that are
populated for this data set.

You can add new records to a chain of related records at various logical
positions within the chain. A chain is a set of PDM related record
connected to each other through the common linkpath field. The entire
chain is connected to one primary file record through its linkpath field of
the same name. If the related record has more than one linkpath, it is a
member of more than one chain. You can add to the beginning, end, or at
any logical position within the chain. When adding records to a related
record chain, the PDM stores all records belonging to one chain as close
together as possible. The following text and figures explain database
navigation when you use an ADDVC, ADDVB, or ADDVA.

Use ADDVC (add chain) to add a related record at the logical end of the
chain on the controlling linkpath. The PDM also adds the new record to
the end of all other linkpaths defined for this record.

Cincom strongly recommends that all additions to a related data set use
the same linkpath. This will help keep all records in one chain close
together and thus give better performance. This should be the path of
most frequent access.

Adding a related record

Programming Guide 219

The following figure shows a primary record connected to a chain of three
related records and what happens to the database’s logical structure
when you issue an ADDVC. Follow the arrows in this figure to see how
the PDM navigates through a single chain of related records.

A 1 3

A 1 3

A

A 1 4

A 2 4

A 1 3

A b2

A 2b

A 3 b

A 2b

Associated
Primary Record Related Record Chain

RRN1

RRN2

RRN3

RRN1

RRN2

RRN3

RRN4 (New Record)

(Record to be added at this
logical position in the chain
after all existing records)

Related Record Chain
After Record is Added
with ADDVC

Chain read in
forward

Chain read in
reverse

direction

direction

Legend:

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

220 P25-0240-49

Use ADDVB (add before) to add a related record in front of another
related record in a record chain. Before making this addition, you must
know the RRN of the record before which you want to place the new
record; otherwise, the PDM will not know where to place the new record.
(Issue a read command to get the RRN of a record.) The PDM adds the
new record logically in front of the record whose RRN you specify in the
reference parameter. The new record is added to the end of all other
linkpaths with which this record is associated. The following figure shows
what happens to the database’s logical structure when you issue an
ADDVB. This figure also shows how the PDM navigates (following
linkpaths) through a single chain of related records.

A 1 3

A 1 3

A 1 3

A 4

A 1 4

A b2

A 2b

A 3

A 2b

Associated
Primary Record Related Record Chain

RRN1

RRN2

RRN3

RRN1

RRN2

RRN3

RRN4 (New Record)

Related Record Chain
After Record is Added
with ADDVB

A

Chain read in
forward

Chain read in
reverse

direction

direction

Legend:

b

2

(Record to be added at this
logical position in the chain
before the record which
happens to be in RRN3)

Adding a related record

Programming Guide 221

Use ADDVA to add (add after) a related record logically after another
related record in a record chain. Before making this addition, you must
know the RRN of the record after which you want to place the new
record; otherwise, the PDM will not know where to place the new record.
(Issue a read command to get the RRN of a record.) The PDM adds the
new record logically after the record whose RRN you specify in the
reference parameter. The new record is added to the end of all other
associated linkpaths. The following figure shows what happens to the
database’s logical structure when you issue an ADDVA. This figure also
shows how the PDM navigates through a single chain of related records.
For more information on using ADDVA, ADDVB, and ADDVC, see
“ADDVA” on page 242, “ADDVB” on page 249, and “ADDVC” on
page 256.

A 1 3

A 1 3

A 1 3

A 2

A 4 3

A b2

A 2b

A 2

A 4b

Associated
Primary Record Related Record Chain

RRN1

RRN2

RRN3

RRN1

RRN2

RRN3

RRN4 (New Record)

Related Record Chain
After Record is Added
with ADDVA

A

Chain read in
forward

Chain read in
reverse

direction

direction

Legend:

b

1

(Record to be added at this
logical position in the chain
after the record which
happens to be in RRN1)

(Third record in
chain logically)

(Fourth record in
chain logically)

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

222 P25-0240-49

Reading a related record
When performing a read on a related data set, you can navigate the data
set in four ways:

♦ A direct read reads one specific record. The PDM locates the record
to be read by first using the control key parameter to locate the
associated primary record. This primary record’s linkpath points to
the appropriate chain of related records. Then, using the RRN
specified in the reference parameter, the PDM goes directly to the
required related record.

♦ A serial read means repeated reads for records in the sequence they
are physically stored on the data set (in RRN order).

♦ For related data set reads, the term sequential is similar to serial in
that it indicates a type of read in which any number of records are
read one after another. However, a sequential read processes the
records in a logical sequence along linkpath chains.

♦ Secondary key reads are serial read processed in the order you
specify on the READX. Secondary keys can be read in a forward or
reverse direction starting at any point in the index data set.

Use READD (read direct) to perform a direct read of a related data set.
READD directly reads a specific related record in a data set without
reading any other related or primary record. For more information on
using READD, see “READD” on page 294.

To perform strictly sequential reads, use a repeated READV or READR.
Use READV to perform a forward sequential read of a linkpath set from
its logical beginning to its logical end. Use the READR to perform a
reverse sequential read of a linkpath set from its logical end to its logical
beginning. For more information on using READV and READR, see
“READV” on page 309 and “READR” on page 303.

Reading a related record

Programming Guide 223

Use repeated RDNXT command to perform a serial read of a specified
related data set. For RDNXT, you can start the search at the beginning
of a data set and continue through it, or start at a specified record and
then continue. To start at the physical beginning, use the keyword BEGN
in the qualifier parameter. To start processing with a specific record, use
an RRN in the qualifier parameter. Repeat the RDNXT without changing
the qualifier to continue to the end of data set. The PDM returns the data
of each record and its location. See “READM” on page 300 for more
information on using RDNXT.

In summary, when processing related data sets the order of data set
navigation can be serial without regard to record chains, sequential
without regard to physical order.

Use a repeated READX to perform a secondary key serial read.
Because all secondary keys are in ascending or descending character
sequence, the records can be retrieved using either a forward or reverse
direction. The first read must use the keyword BEGN in the qualifier field.
To alter the direction of the read, specify the opposite direction keyword
in options, and specify REBD in the qualifier; this starts reading in the
opposite direction. You can start at the beginning or end of the index
data set, or with a particular secondary key. See “READX” on page 314
for more information on using READX.

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

224 P25-0240-49

Updating a related record
You can use WRITV or ADDVR to update a related record. When
updating a related record, determine if the data set is coded or uncoded.
If you are using a coded data list and the data set is coded, you must
include the record code in the data list and data area. If these two codes
do not match or if the code in the record does not match the code in the
data area, an error status code is returned.

If the data set is uncoded, use WRITV. Also use WRITV for a coded data
set if you are not changing a record code or control key. The PDM uses
the RRN in the reference parameter to locate the related record. Before
you can update a related record with WRITV, you must issue a read
command to obtain the RRN. In a multitask operating mode or when task
logging is active, you should issue a read command with record holding.
When the PDM processes a WRITV, like the WRITM, the data items in
the data area are moved to the corresponding location in the record you
want to update.

Use ADDVR to update a related record when you want to change a
record code or control key; otherwise use WRITV. The ADDVR
command can remove a related record from one chain and link it to the
end of another chain.

ADDVR is the only command you can use to change a record code or a
control key.

ADDVR performs like the WRITV except when the update requires the
addition or deletion of a linkpath in the record. If the record exists in both
the old and new linkpaths and the key changes, the PDM logically relinks
an existing related record into different chains without physically moving
the record. The PDM examines every control key defined for the record
to be processed by comparing the new data area to the PDM’s I/O area.
(The PDM’s I/O area contains the existing record which is to be updated.)
If a control key changes, the PDM removes the record from the old chain
and logically adds the record to the end of the new chain; the new
linkpath is determined by the control key specified in the data area. The
PDM updates the old linkpath and new linkpaths to reflect the new links.
See “ADDVR” on page 263 and “WRITV” on page 342 for more
information on using ADDVR and WRITV.

Updating a related record

Programming Guide 225

Deleting a related record
Use DELVD to delete a record from a related data set. If you are running
your program in a multitask environment or if task logging is active, you
should explicitly hold the record before you can delete it. (If you do not
explicitly hold it first, you may receive a HELD status when you try to
delete it.) The PDM removes the record whose RRN is in the reference
parameter from the data set identified in the data set parameter. The
PDM also removes the record from all associated linkpaths and fills the
record with binary zeros so it is available for immediate reuse (see the
following figure). After executing, the PDM updates the reference
parameter with the RRN of the record immediately preceding the deleted
record (in the record chain) identified by the linkpath parameter. See
“DELVD” on page 278 for more information on using DELVD.

A 1 4

A 1 3

A b3

A 2b

Associated
Primary Record Related Record Chain

RRN1

RRN2

RRN3

Related Record Chain
After Record is Deleted

A 1 4

A 1 4

A

A 2b RRN1

RRN2

RRN3

RRN4

(Deleted Record)

Chain read in
forward

Chain read in
reverse

direction

direction

Legend:

b

2

A 42

ABCD

CDEF

GHIJ

KLMN

ABCD

CDEF

KLMN

bbbbb

b

(This record
to be deleted)

Chapter 6 Understanding Physical Data Manipulation Language (PDML)

226 P25-0240-49

7
Using PDML

Use PDML to access the PDM and manipulate data on your SUPRA
Server physical databases.

VMS Warning: Coding RDML and PDML commands in one program can
cause database corruption.

The database access program, DATBAS, provides all access to the
SUPRA Server databases. Physical DML (PDML) provides the format
and values of the parameters for DATBAS. You can use any language
conforming to the operating system calling standard to write your
application program. The number of required parameters varies by
command.

 Programming Guide 227

A typical PDML command is:
CALL "DATBAS" USING command-name, status, data-set, physical-key,

data-item-list, data-area, endp

where:

DATBAS is the database access program in the PDM.

command-name represents the 5-byte name of the DML function to be
performed.

status represents a 4-byte area in your program to which the
PDM returns the completion status of the requested
function.

data-set represents the data set you want to access.

physical-key represents the physical key of the record you want to
access.

data-item-list represents a list of specific data items you want read
from or written to the SUPRA Server database.

data-area represents the area in your program which contains, or
will contain, the data items named in the data-item-list.

endp represents a special value which terminates the
command parameter list, and indicates whether the
record is to be held.

When the function call statement is completed, the PDM returns control
to your application program. Your program should check the returned
status code to determine the function result.

Examples

♦ The same command in COBOL is:
CALL "DATBAS" USING UFUNC, USTAT, UDSET, CKEY,

CLIST, CAREA, UENDP

♦ The same command in FORTRAN is:
CALL DATBAS (UFUNC, USTAT, UDSET, CKEY, CLIST, CAREA, UENDP)

♦ (VMS) The same command in BASIC is:
CALL DATBAS (UFUNC, USTAT, UDSET, CKEY, CLIST, CAREA, UENDP)

♦ The same command in C is:
DATBAS (ufunc, ustat, udset, ckey, clist, carea, uendp);

Chapter 7 Using PDML

228 P25-0240-49

Table of PDML commands
The following tables provide a description and section reference for each
PDML command. The figure following these tables specifies the
parameters required for each command.

Primary data set commands

Command Description Section

ADD-M Adds a record to a primary data set. “ADD-M” on
page 238

DEL-M Deletes a record from a primary data set. “DEL-M” on
page 276

READM Reads a record from a primary data set. “READM” on
page 300

WRITM Updates the indicated data items in a previously
retrieved primary record.

“WRITM” on
page 338

Table of PDML commands

Programming Guide 229

Related data set commands

Command Description Section

ADDVA Adds a related record to a list of records in the
position after the specified record.

“ADDVA” on
page 242

ADDVB Adds a related record to a list of records in the
position before the specified record.

“ADDVB” on
page 249

ADDVC Adds a related record to the end of the list. “ADDVC” on
page 256

ADDVR Relinks an existing related record into different
lists.

“ADDVR” on
page 263

DELVD Deletes the specified related record. “DELVD” on
page 278

READD Retrieves a specified related record “READD” on
page 294

READR Reads a related record along the reverse
direction of a related record list.

“READR” on
page 303

READV Reads a related record along the forward
direction of a related record list.

“READV” on
page 309

WRITV Updates the indicated data items in a previously
retrieved related record.

“WRITV” on
page 342

Serial processing command

Command Description Section

RDNXT Reads primary or related records in physical
sequence.

“RDNXT” on
page 289

READX Reads records in sequence using a secondary
key.

“READX” on
page 314

Chapter 7 Using PDML

230 P25-0240-49

Special function commands

Command Description Section

COMIT Signals the completion of a logical unit of work,
and physically writes all updates to the
appropriate data sets.

“COMIT” on
page 273

CNTRL (VMS only) Holds single or multiple records. “CNTRL (VMS
only)” on
page 269

MARKL Places user-specified data on the function log. “MARKL” on
page 283

OPCOM Passes requests to the PDM and receives
output from the PDM.

“OPCOM” on
page 285

RESET Resets all changes made by this task in the
current logical unit of work.

“RESET” on
page 324

RQLOC Returns the home location of a primary record. “RQLOC” on
page 326

SINOF Disconnects the task from SUPRA Server. “SINOF” on
page 328

SINON Identifies the task to the PDM, specifies which
database and data sets are required, and gives
the access mode for the database and the data
sets.

“SINON” on
page 332

Table of PDML commands

Programming Guide 231

The following figure shows the parameters required for each PDML
command. The parameters are positional; they must appear in the order
indicated.

PARAM ETERS

 s
ta

tu
s

 d
at

a-
se

t

 o
pt

io
ns

 q
ua

lif
ie

r

 r
ef

er
en

ce

 l
in

kp
at

h

 n
od

en
am

e

 p
hy

si
ca

l-k
ey

 c
om

m
an

d

 d
at

a-
ite

m
-li

st

 a
re

a-
le

ng
th

 d
at

a-
ar

ea

 a
cc

es
s-

co
nt

ro
l

 e
nd

p

PRIMARY

FUNCTIONS

 ADD-M ! ! ! ! ! !

 DEL-M ! ! ! ! ! !

 READM ! ! ! ! ! !
 WRITM ! ! ! ! ! !

RELATED

FUNCTIONS

 ADDVA ! ! ! ! ! ! ! !

 ADDVB ! ! ! ! ! ! ! !

 ADDVC ! ! ! ! ! ! ! !

 ADDVR ! ! ! ! ! ! ! !

 DELVD ! ! ! ! ! ! ! !

 READD ! ! ! ! ! ! ! !

 READR ! ! ! ! ! ! ! !

 READV ! ! ! ! ! ! ! !
 WRITV ! ! ! ! ! ! ! !

SERIAL

FUNCTIONS

 RDNXT ! ! ! ! ! !
 READX ! ! ! ! ! ! ! !

SPECIAL

FUNCTIONS

 CNTRL ! ! ! ! ! !

 COMIT ! ! ! !

 MARKL ! ! ! !

 OPCOM ! ! ! ! ! ! !

 RESET ! ! ! !

 RQLOC ! ! ! ! !

 SINON ! ! !
 SINOF ! ! !

Chapter 7 Using PDML

232 P25-0240-49

Data list parameter keywords
The data list tells the PDM what data items to place in the data area (for
reads) or what is already in the data area (for writes and adds). The data
list and data area must match, or results are unpredictable.

Normally you code the data list as the Directory physical field names of
the data items you want to process. However, you can use some
keywords in your data list, or as your entire data list, to perform special
functions. Always use END. to end a data list. These keywords are:
BIND, *FILL=nn, *CODE=xx, and *COMMON*. The *COMMON*
keyword retains compatibility for existing TOTAL or TIS applications.

BIND

Resolves the data list by constructing information in memory to eliminate
a table lookup each time the data list is used. SUPRA automatically binds
all data lists by using the entire data list as the key into the internal data
list table. If used, **BIND** must be the first word in the data list. You
cannot use commas between items in a data list. For example:
BINDdataitem1dataitem2...dataitemnEND.

On the first execution of the command with this list, the PDM changes
BIND to *BNDxxxx, where xxxx is an internal binary identifier used as
a key into the internal data list table.

You can use this keyword for either primary or related files.

Data list parameter keywords

Programming Guide 233

*FILL=nn

Skips the specified number of bytes in the data area during data transfer.
Multiple usage in the same data list is allowed. You can use this keyword
for either primary or related files. You can use values of 00–99 for nn.

You initialize the data area to spaces or any values you want before using
a data list with *FILL=nn keyword(s). You might use *FILL=nn to
preformat a data area so that you can print directly from it after retrieving
a record. For example, to generate a line of print that looks like:
CODE=02 KEY=00001 KEY=00002

You would first initialize the data area to:
CODE= KEY= KEY=

You would then code the data list as follows:
*FILL=05rrrrCODE*FILL=06rrrrKY01*FILL=06rrrrKY02END.

The PDM skips the first 5 bytes, which you have initialized to CODE=,
returns the rrrrCODE value into the next 2 bytes, skips the next 6 bytes,
and so on, resulting in the line you wanted.

When processing add or write commands, do not use *FILL=nn unless
there are also data items in the data list.

When read-ahead buffering is active, the behavior of *FILL= can be
slightly modified. The values passed in the data area are not necessarily
the ones used to fill the data area of the returned records. When
DATBAS requests multiple records from PDM, the data area containing
the *FILL= values is passed to PDM and is used to fill all of the records
read. This works for most applications. However, if your application
modifies the *FILL= data on each DATBAS call, you will have to turn off
the read-ahead feature. This can be done by defining the logical name
CSI_READAHEAD to NO. Refer to the SUPRA Server PDM System
Administration Guide (UNIX), P25-0132, for more details on defining
logical names and the use of the CSI_READAHEAD logical name.

Chapter 7 Using PDML

234 P25-0240-49

*CODE=xx

This keyword is for coded related files only, to process only certain record
codes. For each occurrence, it identifies which record code the following
subdata list refers to. Except for **BIND**, this keyword must be the first
item in the data list. It must not be the last item in the list; at least one
data item must follow it.

On most read commands, the PDM merely skips any records with record
codes not identified in the data list. However, if the read command is a
READD, the PDM returns an error status if the code is not identified. On
a write or add command, the PDM performs the request only if the record
in the data area has one of the record codes identified in the data list.
Otherwise the PDM returns an error status. Use *CODE=xx as follows:
*CODE=xxdataitem1*CODE=xxdataitem1dataitem2END.

The following examples further describe the action the PDM takes on the
various types of read, and on adds or updates. All examples refer to the
following data list:
*CODE=01RECSelm1*CODE=02RECSelm1RECSkey1END.

1. When issuing a READD command (read direct), the PDM uses the
RRN in the READD’s reference parameter to locate the record to be
read. Then, the PDM fills the data area with different information
depending on the record code.

 According to the example data list, if the RRN points to a record
whose record code is 02, the data area contains:
xy00001

 If the RRN points to a record whose record code is 01, the data area
contains:
xy

 However, if the READD RRN points to a record whose record code is
03, the PDM returns an error status code.

 When using multiple record codes in a single element list, to know
which record code has been returned, Cincom suggests that you
include the RECSCODE element name in each coded sublist as
follows:

*CODE=01RECSCODERECSelm1*CODE=02RECSCODERECSelm1RECSkey1END.

Data list parameter keywords

Programming Guide 235

2. When performing a series of reads using RDNXT, READR, or
READV for a coded file, using the above example data list, the PDM
returns information as described below to the data area and status.

 Records containing record codes other than those specified in the
data list will be skipped when processing a RDNXT, READR, or
READV. The PDM simply skips those records and processes the
next record. You do not receive an error status as you would on a
READD (see #1).

3. When performing an ADDVA, ADDVB, ADDVC, ADDVR or WRITV
with the example coded data list, the PDM processes the request
only if the data area record code is in the data list. The first 2 bytes of
the data area determine which portion of the data list maps the
remainder of data in the data area (*CODE=01 or *CODE=02). If
another record code is in the data area, the PDM returns an error
status.

Chapter 7 Using PDML

236 P25-0240-49

COMMON

This keyword is a compatibility form of *CODE=xx, to make the data list a
coded data list. Two formats are supported for existing TOTAL and TIS
1.x applications:

The following rules apply when coding a *COMMON* data list:

♦ Use the *COMMON* keyword for compatibility only. For new
applications, use *CODE=xx (or use the RDML language for the
application).

♦ A data list should follow each *CODE=xx, entry. If you do have data
items common to more than one record code, name them in the
COMMON base data list or in each *CODE=xx sublist, as
appropriate.

♦ Do not name the record code item in any coded data list unless you
also name it as the first item in the base data list.

♦ When writing or adding a record (using the *COMMON* keyword),
include the record code as the first data item in the base data list.
This allows the PDM to determine which of the coded data lists maps
the data area. If you omit the record code or include it somewhere
other than at the beginning of the base data list, results are
unpredictable.

Data list parameter keywords

Programming Guide 237

PDML commands
This section presents the PDML commands in alphabetical order. Each
subsection presents a command with a general description followed by
the command format, parameter descriptions, coding information, and
operational considerations. All parameters shown within the command
format are required.

ADD-M
Use ADD-M (Add Primary) to add a new record to a primary data set. To
determine the location of the new record on the data set, the Physical
Data Manager (PDM) uses the relative address calculator on the unique
physical key. The PDM then constructs the new record, using the
required data items from the data area, and writes the record.

See “The ADD-M command” on page 361 for more information on using
ADD-M successfully.

ADD-M, status, data-set, physical-key, data-item-list, data-area,
endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

238 P25-0240-49

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

physical-key

Description Required. Points to a field containing the key of the primary record to be
added. The PDM uses this key to determine whether a record with the
same physical key already exists.

Format Variable-length as defined on the Directory

Consideration During the command processing, if the physical-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the physical-key field
name in the data area for this parameter, rather than define a separate
field.

data-item-list
Description Required. Points to a field containing a list of data items. This list acts

as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

PDML commands

Programming Guide 239

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Physical keys (CUSTCTRL)

- Special data item processing keywords (**BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following is an example of a data item list:
CUSTCTRLCUSTADDRCUSTCREDEND.

UNIX Data items omitted from the list and data area are filled with either blanks
or nulls, depending on the value of the binary-zero-key field in the
database definition. If binary zero keys are allowed, the omitted fields
are filled with spaces. If binary zero keys are not allowed, omitted fields
are filled with binary zeros.

Chapter 7 Using PDML

240 P25-0240-49

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations
♦ The data item list serves as a map of the data area. The structure

and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Delimits the parameter list (same effect as END.)

General considerations
♦ Data items you do not code in the data item list are set to binary

zeros.

♦ The data item list holds names, and the data area holds a value for
each of those names. Include the record’s physical key name in the
data item list and its value in the corresponding position of the data
area.

UNIX Data items omitted from the list and data area are filled with either blanks
or nulls, depending on the value of the binary-zero-key field in the
database definition. If binary zero keys are allowed, the omitted fields
are filled with spaces. If binary zero keys are not allowed, omitted fields
are filled with binary zeros.

PDML commands

Programming Guide 241

ADDVA
Use ADDVA (Add Related After) to logically add the record in the data
area after the record whose RRN is in the reference parameter. This
logical addition is made only for the linkpath specified by the linkpath
parameter—primary linkpath. For all other linkpaths defined for this
record (secondary linkpaths), the addition is made to the end of each
respective list.

ADDVA, status, data-set, reference, linkpath, physical-key,
data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Description Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

Chapter 7 Using PDML

242 P25-0240-49

reference

Description Required. Points to a field identifying the RRN of the record after which
the new record in this chain is to be added.

Format 4 alphanumeric characters or a 4-byte binary integer

Options LKxx The last 4 characters of the linkpath named by the
linkpath parameter (where xx = the last 2 characters).
The PDM adds the record to the end of the linkpath
rather than after a particular record.

rrrr The RRN of the record after which the new record is to
be added to the linkpath.

Consideration After successful execution, this parameter contains the RRN of the
record just added.

PDML commands

Programming Guide 243

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

Chapter 7 Using PDML

244 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable-length as defined on the Directory

Consideration During the command processing, if the physical-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the physical-key field
name in the data area for this parameter, rather than define a separate
field.

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

PDML commands

Programming Guide 245

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following is an example of a data item list:
 *CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

UNIX Data items omitted from the list and data area are filled with either blanks
or nulls, depending on the value of the binary-zero-key field in the
database definition. If binary zero keys are allowed, the omitted fields
are filled with spaces. If binary zero keys are not allowed, omitted fields
are filled with binary zeros.

Chapter 7 Using PDML

246 P25-0240-49

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Delimits the parameter list (same effect as END.)

PDML commands

Programming Guide 247

General considerations

♦ Data items you do not code in the data item list are set to binary
zeros.

♦ To add a record involving secondary linkpaths, the PDM updates a
primary record for each physical key defined for this record.
Therefore, these physical keys’ identifiers must all be present in the
data item list. The data area must contain valid physical key values—
they must represent records which exist in the respective primary
data sets.

♦ If the reference parameter contains LKxx, the record is added at the
end of the list.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

Chapter 7 Using PDML

248 P25-0240-49

ADDVB
Use ADDVB (Add Related Before) to logically add the record in the data
area before the record whose RRN is in the reference parameter. This
logical addition is made only for the linkpath specified by the linkpath
parameter—primary linkpath. For all other linkpaths defined for this
record (secondary linkpaths), the addition is made to the end of each
respective list.

ADDVB, status, data-set, reference, linkpath, physical-key,

 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

PDML commands

Programming Guide 249

reference

Description Required. Points to a field identifying the RRN of the record after which
the new record in this chain is to be added.

Format 4 alphanumeric characters or a 4-byte binary integer

Options LKxx The last 4 characters of the linkpath named by the
linkpath parameter (where xx = the last 2 characters).
The PDM adds the record to the beginning of the
linkpath rather than after a particular record.

rrrr The RRN of the record after which the new record is to
be added to the linkpath.

Consideration After successful execution, this parameter contains the RRN of the
record just added.

Chapter 7 Using PDML

250 P25-0240-49

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

PDML commands

Programming Guide 251

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable-length as defined on the Directory

Consideration During the command processing, if the physical-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the physical-key field
name in the data area for this parameter, rather than define a separate
field.

Chapter 7 Using PDML

252 P25-0240-49

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

PDML commands

Programming Guide 253

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

♦ The following is an example of a data item list:
*CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

Chapter 7 Using PDML

254 P25-0240-49

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ Data items you do not code in the data item list are set to binary
zeros.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

♦ To add a record with secondary linkpaths, the PDM updates a
primary record for each physical key defined for this record.
Therefore, these physical keys’ identifiers must all be present in the
data item list. The data area must contain valid physical key values—
they must represent records which exist in the respective primary
data sets.

♦ If the reference parameter indicates the start of the list (LKxx), the
record is added at the beginning of the list.

PDML commands

Programming Guide 255

ADDVC
Use ADDVC (Add Related Continue) to logically add the record in the
data area to the end of all linkpaths defined for the record in the compiled
database description.

ADDVC, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

Chapter 7 Using PDML

256 P25-0240-49

reference

Description Required. Points to a field identifying the RRN of the record after which
the new record in this chain is to be added.

Format 4 alphanumeric characters or a 4-byte binary integer

Options LKxx The last 4 characters of the linkpath named by the
linkpath parameter (where xx = the last 2 characters).
The PDM adds the record to the end of the linkpath
rather than after a particular record.

rrrr The RRN of the record after which the new record is to
be added to the linkpath.

Consideration After successful execution, this parameter contains the RRN of the
record just added.

PDML commands

Programming Guide 257

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

Chapter 7 Using PDML

258 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable-length as defined on the Directory

Consideration During the command processing, if the physical-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the physical-key field
name in the data area for this parameter, rather than define a separate
field.

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

PDML commands

Programming Guide 259

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

♦ The following is an example of a data item list:
 *CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

Chapter 7 Using PDML

260 P25-0240-49

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

PDML commands

Programming Guide 261

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ Data items you do not code in the data item list are set to binary
zeros.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

♦ To add a record with secondary linkpaths, the PDM updates a
primary record for each physical key defined for this record.
Therefore, these physical keys’ identifiers must all be present in the
data item list. The data area must contain valid physical key values—
they must represent records which exist in the respective primary
data sets.

Chapter 7 Using PDML

262 P25-0240-49

ADDVR
Use ADDVR (Add Related Replace) to logically connect an existing
related record with different lists without physically moving the record in
the data set. The PDM examines every physical key parameter in the
data item list and compares its value in the data area with the previous
value in the data record.

♦ If a physical key parameter has changed, the PDM updates it in the
data record and disconnects the record from the old list. SUPRA
Server then logically adds the record to the end of the new list
controlled by the physical key value in the data area.

♦ If a physical key field has not changed, the PDM does not disturb that
linkage.

ADDVR, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 263

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

reference

Description Required. Points to a field identifying the RRN of the existing record to
be compared to your data area.

Format 4 alphanumeric characters or a 4-byte binary integer

Consideration After successful completion, the RRN remains the same.

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Chapter 7 Using PDML

264 P25-0240-49

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable-length as defined on the Directory

Considerations

♦ During the command processing, if the physical-key parameter does
not match the corresponding field in your data area, a status code
informs you of the failure. To avoid this, you should use the physical-
key field name in the data area for this parameter, rather than define
a separate field.

♦ If you are changing the key value associated with the linkpath
parameter, this field must contain the new key value.

PDML commands

Programming Guide 265

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

Chapter 7 Using PDML

266 P25-0240-49

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

UNIX Data items omitted from the list and data area are filled with either
blanks or nulls, depending on the value of the binary-zero-key field in
the database definition. If binary zero keys are allowed, the omitted
fields are filled with spaces. If binary zero keys are not allowed,
omitted fields are filled with binary zeros.

♦ If you are changing the record’s code, this list must name data items
that are valid for the new code.

♦ You can update the value of any of the data items in addition to
updating control keys or record code.

♦ The following is an example of a data item list:
 *CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations
♦ The data item list serves as a map of the data area. The structure

and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

PDML commands

Programming Guide 267

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Holds the record after it is read

RLSE Holds the record after it is read

General considerations
♦ ADDVR is the only command that can change the record code. This

change could add or delete a linkpath in the record. The PDM
examines the linkpaths defined in the SUPRA Server compiled
database description for the old and new record codes.

 Any linkpaths not common to both codes are deleted or added as
required. Additions are made to the logical end of the list controlled
by the physical key value in the data area.

♦ If you use the ADDVR command to change the record code, code all
data items which occur in the redefined area for the new record code,
even though they are not being changed.

Chapter 7 Using PDML

268 P25-0240-49

CNTRL (VMS only)
Use CNTRL to hold single or multiple records.

CNTRL status, options, area-length, data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 269

options

Description Required. Specifies a list of parameters concerned with holding single or
multiple records.

Format Variable-length field

Options ACTION=SET or FREE
Required. Specifies whether to hold or release a record.

TYPE=READ,LOCK or ANYLOCK
Required. Identifies the type of hold to be obtained or released.
READ is equivalent to shared read hold, LOCK is equivalent to
exclusive hold. ANYLOCK can be used only if the ACTION=FREE,
releasing both shared read holds and exclusive holds.

LEVEL=FILE or RECORD
Optional. Specifies the level (file level or record level) at which the
hold applies.

FILE=data-set-name
Required. Identifies the file containing the record(s) to hold.

TIME=seconds
Optional. Specifies the maximum time to wait for a record hold in
numbers of seconds. The value you specify for TIME takes
precedence over the value specified for DEFTIME.

DEFTIME=seconds
Optional. Specifies the default time to wait for a record hold. This
time is used if you omit the TIME option and applies to all DML
functions trying to acquire record holds. You can change the default
at any time while a task is signed on. The TIME value takes
precedence over the DEFTIME value.

Considerations

♦ You can specify any or all of the option parameters separated by
commas and terminated by END.

♦ You can specify each option more than once, but the PDM uses only
the last occurrence.

♦ The following is an example of an option parameter:
 ACTION=SET,TYPE=LOCK,LEVEL=RECORD,FILE=PART, TIME=0001,END.

Chapter 7 Using PDML

270 P25-0240-49

area-length

Description Required. Specifies the length of the data area containing the list of
RRNs or key values. If an error condition such as HELD occurs, the
PDM returns the relative position of the key or RRN which failed.

Format 4-byte binary integer

data-item-list

Description Required. Specifies data items to moved to or from the data area. This
list serves as a map of the layout of the data area.

Format 12-character field containing one of the following keywords plus END.:

*KEYLIST Indicates that the data area contains a list of control keys
(primary files only). You must use the LEVEL=RECORD
option.

*RRNLIST Indicates that the data area contains a list of RRNs. You
must use the LEVEL=RECORD option.

ALL. All records. You must use the LEVEL=FILE option.

NONE No records. No action is taken.

Consideration Always terminate this parameter with END.

data-area

Description Required. An area containing a list of RRNs or key values to be held.

Format Variable-length area of sufficient size to hold one of the following:

♦ If the data list contains *RRNLIST—an array of 4-byte binary integer
RRNs to be held.

♦ If the data list contains *KEYLIST—an array of control-key-size
character fields containing keys to the primary file of records to be
held.

Consideration This field is not examined if the data list contains **NONE** or **ALL.**,
but the field must point to a valid parameter area.

PDML commands

Programming Guide 271

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read
RLSE Releases the record after it is read

General considerations
♦ A task can obtain one of two types of hold on a record or file:

- LOCK obtains an exclusive hold
- READ obtains a shared read hold

♦ No two tasks may LOCK the same record or file concurrently; the
second task receives a HELD status. However, two tasks may obtain
a shared hold on a record or file as shown in the following table.

 Existing hold obtained by task 1

Hold requested
by task 2

Lock
record

Read
record

Lock
file

Read
file

Lock file HELD HELD HELD HELD

Read file HELD **** HELD ****

Lock record HELD HELD HELD HELD

Read record HELD **** HELD ****

♦ For example, assume TASK1 has a shared read on FILE-A (the last
column in the table.) If TASK2 attempts to lock FILE-A, it will receive
a HELD status. If, however, TASK2 attempts a shared read of
FILE-A, it receives a successful status **** and can continue
processing.

♦ The default hold level is RECORD (see the description of the Option
parameter).

♦ Any value specified for the TIME option takes precedence over any
value specified for the DEFTIME option. Any value specified for
DEFTIME takes precedence over the RETRY value specified as a
PDM input parameter. (Refer to the SUPRA Server PDM System
Administration Guide (VMS), P25-0130.)

Chapter 7 Using PDML

272 P25-0240-49

COMIT
Use COMIT to inform the PDM that the current task has completed a
logical unit of work. It also indicates that updates performed since the last
COMIT are permanent (no longer subject to back-out via RESET or
because of a system or program failure).

COMIT also allows you to write a comment in the COMIT record. By
executing COMIT, you momentarily cause SUPRA Server to:

♦ Synchronize all processing

♦ Physically write any buffers affected by this task to disk

♦ Release all resources held by this task

♦ (If task logging is inactive) Reset the task log file area for this task

UNIX All read-ahead buffers are released.

If you issue COMIT and task logging is inactive, the buffers are physically
written, resources are released and processing continues.

COMIT, status, area-length, data-area, endp

PDML commands

Programming Guide 273

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

area-length

Description Required. Specifies to the PDM the length of the data stored in the data
area that will be written to the log file.

Format 4-byte binary integer

Consideration If no data is to be stored by COMIT, the area-length may be set to zero.

data-area

Description Required. An area containing the data to be written to the log file.

Format Variable-length field equal to the value specified in the area-length
parameter.

Consideration The amount of data stored cannot exceed the size of the log file.

Chapter 7 Using PDML

274 P25-0240-49

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)
RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ COMIT immediately releases all records held by the task so other
tasks may access those records.

♦ Excessive use of COMIT affects performance since additional I/O is
required.

♦ The area length should not exceed the task log buffer size minus 72
or an LSZE status is returned. If this occurs, the COMIT is not
completed.

♦ If you issue a RESET, the data written to the task log file by COMIT is
returned to the application program. This data identifies the COMIT
point to which the program has been reset.

PDML commands

Programming Guide 275

DEL-M
Use DEL-M to delete a primary record by setting it to binary zeros. The
unused location is available for immediate reuse.

DEL-M, status, data-set, physical-key, data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

Chapter 7 Using PDML

276 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this parameter to locate the primary record.

Format Variable-length as defined on the Directory

data-item-list

Description Required. This field is not examined; however, it must point to a valid
parameter area.

data-area

Description Required. This field is not examined; however, it must point to a valid
parameter area.

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ The PDM does not delete a primary record if any related records
remain linked to it. You must first use DELVD to delete each related
record.

♦ Because of internal space management considerations, you should
not use this command with the serial retrieval command RDNXT. If
you do, records might be read twice or missed completely during the
serial read process.

PDML commands

Programming Guide 277

DELVD
Use DELVD to delete the related record whose RRN is in the reference
parameter. The unused location is available for immediate reuse. The
record is disconnected from all associated primary records. Upon
completion of DELVD, the reference parameter returned contains the
RRN of the record that logically precedes the deleted record, or LKxx if
there is no preceding record.

DELVD, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

278 P25-0240-49

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

reference

Description Required. Points to a field identifying the RRN of the related record to be
deleted.

Format 4 alphanumeric characters or a 4-byte binary integer

Consideration When the DELVD command completes, the PDM updates the reference
field to the RRN of the previous logical record in the chain. However, if
the deleted record was logically the first record on the chain, the
reference field is updated to LKxx instead (where xx = the actual
characters from the linkpath name).

PDML commands

Programming Guide 279

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

Chapter 7 Using PDML

280 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named by the linkpath parameter. Many other primary records may
need updating as a result of this DELVD command.

Format Variable-length as defined on the Directory

Considerations

♦ If the physical key value does not match the value in the record to be
deleted (RRN), the PDM returns an error status code .

♦ This parameter specifies the key of the controlling primary record.

♦ The PDM determines a Relative Record Number (RRN) for each
record by performing a calculation on the physical key’s value. This
process is the relative address calculator. The PDM uses the RRN to
add or read the primary record. The length of the physical key for the
relevant primary data set is defined in the compiled database
description. When you are performing a related record function, this
parameter specifies the key of the controlling primary record.

data-item-list

Description Required. This field is not examined; however, it must point to a valid
parameter area.

data-area

Description Required. This field is not examined; however, it must point to a valid
parameter area.

PDML commands

Programming Guide 281

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ If you perform a READV immediately after a DELVD without
changing the reference parameter, SUPRA Server retrieves the
record logically following the deleted record.

♦ If you issue a READD immediately after a DELVD without changing
the reference parameter, SUPRA Server retrieves the record logically
preceding the deleted record.

♦ If you issue a READR immediately after a DELVD without changing
the reference parameter, the record logically preceding the deleted
record is skipped, and the next preceding record is retrieved.

♦ To delete an entire list of records, read the last one (READR) with
record holding. Then perform successive DELVD commands until the
reference parameter is set to LKxx.

Chapter 7 Using PDML

282 P25-0240-49

MARKL
Use MARKL (Mark the System Log File with User Record) to enable the
application program to write records containing your own information onto
the System Log File. These MARKL records appear in the System Log
File together with the function records the PDM creates. Your records are
ignored when the system log is processed by the SUPRA Server
recovery program.

UNIX All read-ahead buffers are released.

MARKL, status, area-length, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 283

area-length

Description Required. Specifies to the PDM the length of the data stored in the data
area that will be written to the log file.

Format 4-byte binary integer

data-area

Description Required. An area containing the data to be written to the log file.

Format Variable-length field equal to the value specified in the area-length
parameter.

Consideration The amount of data stored cannot exceed the size of the log file.

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General consideration

 Excessive use of MARKL affects performance since MARKL writes a
user record to the system log, thus requiring additional I/O. Programs will
run more efficiently if you use MARKL only when necessary.

Chapter 7 Using PDML

284 P25-0240-49

OPCOM
Use OPCOM to pass requests to and receive output from the PDM, in
effect programming your own interface to the PDM instead of using
CSIOPCOM, VMS REPLY, or UNIX csireply.

You can use this function either on its own or in parallel with the existing
VMS REPLY or UNIX csireply facility. Refer to the SUPRA Server PDM
System Administration Guide (VMS), P25-0130, for a description of how
to suppress the VMS REPLY or UNIX csireply facility using the PDM
input parameter SYSOPCOM=N.

OPCOM status, qualifier, node-name, command, area-length,
 data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 285

qualifier

Description Required. A field which receives a return value of NEXT if the specified
PDM operator command returns more than one line. A value of END. is
returned when no additional lines of output are available.

Format 4-byte field

node-name

Description Required. Specifies where the PDM is running.

Format

VMS A 6-character field containing the logical name of the VMS node on which
the command should be executed. Pad the field with spaces if the node
name is less than six characters. Fill the field with spaces if the PDM is
local.

UNIX A character field containing the node name of the machine on which the
PDM is running. This field must be a null terminated string.

command

Description Required. Contains the PDM operator command to be executed by the
OPCOM function.

Format Variable-length field

Considerations

♦ Always terminate this parameter with END.

♦ The following is an example:
 DISPLAY/DATABASES END.

 UNLOAD/FORCE BURRYS[000114]END.

♦ For details on valid PDM operator commands, refer to the SUPRA
Server PDM System Administration Guide (UNIX), P25-0132; or the
SUPRA Server PDM System Administration Guide (VMS), P25-0130.

Chapter 7 Using PDML

286 P25-0240-49

area-length

Description Required. The PDM sets this parameter to the length of the PDM output
returned.

Format 4-byte binary integer

data-area

Description Required. An area to contain any output data returned to your program
by the OPCOM command.

Format A variable-length data area of sufficient length to hold the returned data
(maximum = 132 characters)

Consideration SUPRA PDM returns data to your program as a formatted report with line
lengths of up to 132 characters. Each call returns one line; therefore, the
maximum data area size is 132.

PDML commands

Programming Guide 287

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ OPCOM does not have any automatic PDM startup or restart
capability.

♦ If the PDM input file parameter CONSOLE is set to YES, the Physical
DML OPCOM command sends the result to the specified
OPERATOR terminal as well as to the DML function data area. If the
PDM input file parameter CONSOLE is set to NO, OPCOM sends the
result to the DML function data area only.

VMS You can suppress output to the OPERATOR terminal without setting
SYSOPCOM to NO by disabling the specified OPERATOR terminal.

♦ When multiple lines of output are generated by the OPCOM
command (such as with the DISPLAY/DATABASES command), the
qualifier parameter will contain NEXT. This indicates that additional
OPCOM commands are necessary to retrieve additional lines of
output. When the qualifier contains END., no additional lines of
output are available for the OPCOM command executed. The
qualifier must not contain END. before the call to datbas or no data
will be returned by the PDM. Be sure the value END. is not retained
in the qualifier parameter from a previous call.

♦ An application should not be signed on to a database when using the
OPCOM function call. OPCOM is a special DML function and does
not operate properly when an application is signed on, that is, when
an application has successfully performed a SINON function without
a SINOF function. If an application is signed on to a database when
the OPCOM function is issued, then it is possible for the application
to receive a success status of “****” while receiving no data.

Chapter 7 Using PDML

288 P25-0240-49

RDNXT
Use RDNXT (Read Next) to provide a generalized serial retrieval method.
You can direct the retrieval to a specific point in the data set (such as the
beginning of the data set) or a specific record location (RRN) within the
data set. Each retrieved record is placed in the data area. If a coded data
list is used, record codes omitted from the list are not retrieved.

You can continue retrieval by simply reexecuting RDNXT until you reach
the end of the data set. Only data records are returned to the application
program; unused records and control records are bypassed. The RRN of
the record read is returned in the qualifier. Subsequent executions of
RDNXT can continue processing serially from that point. When the end of
the data set is reached, the characters END. are returned in the qualifier.

See “Structural maintenance during serial processing” on page 362 and
“Understanding RDNXT serial processing” on page 367 for more
information on RDNXT.

RDNXT, status, data-set, qualifier, data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 289

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

qualifier

Description Required. Specifies parameters concerned with serial processing of
records.

Format 4-byte field

Options The following table lists the qualifier values and their meanings when
used with RDNXT.

Value

Meaning when passed to the
PDM

Meaning when returned by
the PDM

BEGN (four ASCII
characters)

Read the existing record with the
lowest RRN (Relative Record
Number) in the indicated primary or
related data set.

n/a

rrrr (The RRN of an
existing record in
the current data set
expressed as a
4-byte integer)

Read the record with the next higher
RRN than the one supplied.

Identifies the RRN of the record
read.

END. (four ASCII
characters)

 No record was read because no
record exists in the current data
set with a higher RRN value than
the RRN specified.

Consideration To read the first record in the data set, set the field to BEGN. For each

RDNXT, the PDM returns a value in this field identifying the record just
read by SUPRA Server. Do not change this value; use it only for the
following purposes:

♦ To test whether all the records in the data set have been read

♦ To read the next record

When all the records have been read, SUPRA Server sets the qualifier to
END. and the returned data area is no longer valid. You can save the
qualifier value to continue reading from the current position later.

Chapter 7 Using PDML

290 P25-0240-49

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Physical keys (CUSTCTRL)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following are 2 examples of data item lists:
 CUSTCTRLCUSTADDRCUSTCREDEND.

 BIND*CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

PDML commands

Programming Guide 291

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

Chapter 7 Using PDML

292 P25-0240-49

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General considerations

♦ Because of internal space management considerations, you should
not use DEL-M while you are processing primary data sets with
RDNXT. DEL-M performs internal space management operations
which can physically move other records in the primary data set.
Therefore, if DEL-M is performed in conjunction with RDNXT
processing, records might be read twice or missed completely during
the serial read process.

♦ You can perform a WRITM while processing primary data sets with
the RDNXT.

♦ You can perform WRITV and DELVD while processing related data
sets with the RDNXT command. The reference parameters for these
commands may be taken from the qualifier parameter.

♦ RDNXT performs a physical serial read and does not process
according to physical key sequence.

PDML commands

Programming Guide 293

READD
Use READD (Read Direct) to directly retrieve the related record specified
by the RRN in the reference parameter. You can continue any related
data set processing, using any valid linkpath for that record.

READD, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

294 P25-0240-49

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

reference

Description Required. Points to a field containing the RRN of the related record to be
read.

Format 4 alphanumeric characters or a 4-byte binary integer

Consideration When the READD command completes successfully, the reference
parameter still contains the RRN of the retrieved record—the PDM does
not change reference.

PDML commands

Programming Guide 295

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as defined in the
database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

physical-key

Description Required. Points to a field containing the key of the primary record
controlling the chain. The PDM uses this key to link from a primary
record to a related record.

Format Variable-length as defined on the Directory

Chapter 7 Using PDML

296 P25-0240-49

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Physical keys (CUSTCTRL)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following are two examples of data item lists:
CUSTCTRLCUSTADDRCUSTCREDEND.

*CODE=AB*CODE=XXORDRCUSTORDRPRODEND.

PDML commands

Programming Guide 297

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

Chapter 7 Using PDML

298 P25-0240-49

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General considerations

♦ An RRN supplied to READD can come from one of these sources:

- Your program saved the RRN when processing a related data
set, and you are now preparing to resume processing by
retrieving a previously read record.

- A DELVD has just been performed and you wish to retrieve the
record preceding the deleted record. In this case, your program
must have held the record from the time you obtained the RRN
until the time you reused it. Otherwise, another task might have
changed, moved or deleted the record.

♦ If a coded data list is used and the record code of the record read
does not match the code specified in the data list, the error IVRC will
be returned in the status parameter.

PDML commands

Programming Guide 299

READM
Use READM (Read Primary) to read a primary record and write it to the
data area according to the data item list. The PDM locates the specified
record by using the relative address calculator on the unique physical
key.

READM, status, data-set, physical-key, data-item-list, data-area,
endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter

Chapter 7 Using PDML

300 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this key to identify the primary record being
read.

Format Variable-length as defined on the Directory

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)
- Physical keys (CUSTCTRL)
- Special data item processing keywords (**BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)
- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following is an example of a data item list:
CUSTCTRLCUSTADDRCUSTCREDEND.

PDML commands

Programming Guide 301

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General consideration

 To determine whether a primary record exists, read the record using
READM. A status of **** indicates that it does exist. A status of MRNF
indicates that it does not exist.

Chapter 7 Using PDML

302 P25-0240-49

READR
Use READR (Read Reverse) to read the record preceding the specified
related record within the defined linkpath. To read an entire list of records
in the reverse direction, start processing by placing LKxx into the
reference field, and then issue READR. The last record in the list is then
returned.

Continue processing by reissuing READR without changing the reference
parameter. READR retrieves records in reverse order until the first record
of the list has been processed. When you issue a READR with the
reference parameter containing the RRN of the first record, END. is
returned in the reference parameter to indicate that the list has been
completely processed.

READR, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 303

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

Chapter 7 Using PDML

304 P25-0240-49

reference

Description Required. Points to a field identifying the position in a related record
chain. You use the reference parameter by placing a certain value in this
field to tell the PDM which record to begin with. The PDM returns a
certain value to inform you which related record was processed.

Format 4-byte field

Options LKxx The last 4 characters of the linkpath named by the linkpath
parameter (where xx = the last 2 characters). This value directs the
PDM, for READR, to read the last logical record in the chain for this
control key.

rrrr This is set by the PDM to identify the RRN of the record just read.
When you issue a READR with reference still set to rrrr from the previous
READR, the PDM uses this RRN to locate the preceding logical record in
the chain.

Considerations

♦ If the reference parameter contains an RRN, the READR uses the
back pointer in that record to find the RRN of the preceding record.
The preceding record is retrieved and its RRN is placed in the
reference field. Therefore, reference always contains the RRN of the
record just read.

♦ The PDM places the keyword END. in the reference field if you
attempt to go beyond the end of the chain. This signifies that the
previous read returned the first logical record in the chain (head-of-
chain). You can reinitialize the parameters to begin another chain
process.

♦ If the PDM sets END. for a first READR execution with LKxx, the
chain is empty.

♦ Because END. is not valid as input reference for READR, your
program must change this value before it issues another READR.
You must, therefore, include logic in your program to test the
reference field for END. after each command to detect the logical end
of the search (beginning of the chain).

PDML commands

Programming Guide 305

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations

♦ The primary data set contains the controlling primary record whose
key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

physical-key

Description Required. Points to a field containing the key of the primary record
controlling the chain. The PDM uses this key to link from a primary
record to a related record.

Format Variable-length as defined on the Directory

Chapter 7 Using PDML

306 P25-0240-49

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords (*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following is an example of a data item list:
 BIND*CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

PDML commands

Programming Guide 307

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General consideration

 When the reference parameter contains END. and the list of records has
been completely processed, any further related data set commands
executed return an IVRP (Invalid Reference Parameter) status code.

Chapter 7 Using PDML

308 P25-0240-49

READV
Use READV (Read Related) to read the record following the specified
related record within the defined linkpath. To read an entire list of
records, initiate processing by placing LKxx into the reference parameter
and issue READV. The first record of the list is then returned.

Continue processing by reissuing READV without changing the reference
parameter. READV retrieves records in forward order until the last record
in the list has been processed. When you issue a READV with the
reference parameter containing the RRN of the last record, END. is
returned in the reference parameter to indicate that the list has been
completely processed.

READV, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

PDML commands

Programming Guide 309

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

reference

Description Required. Points to a field identifying the position in a related record
chain. You use the reference parameter by placing a certain value in this
field to tell the PDM which record to begin with. The PDM returns a
certain value to inform you which related record was processed.

Format 4 -byte field
Options LKxx The last 4 characters of the linkpath named by the

linkpath parameter (where xx = the last 2 characters).
This value directs the PDM, for READV, to read the last
logical record in the chain for this control key.

rrrr This is set by the PDM to identify the RRN of the record
just read. When you issue a READV with reference still
set to rrrr from the previous READV, the PDM uses this
RRN to locate the next logical record in the chain.

Considerations
♦ If the reference parameter contains an RRN, the READV uses the

forward pointer in that record to find the RRN of the next record. The
next record is retrieved and its RRN is placed in the reference field.
Therefore, reference always contains the RRN of the record just
read.

♦ The PDM places the keyword END. in the reference field if you
attempt to go beyond the end of the chain. This signifies that the
previous read returned the last logical record in the chain (end-of-
chain). You can reinitialize the parameters to begin another chain
process.

♦ If the PDM sets END. for a first READV execution with LKxx, the
chain is empty.

♦ Since END. is not valid as input reference for READV your program
must change this value before it issues another READV. You must,
therefore, include logic in your program to test the reference field for
END. after each command to detect the logical end of the search
(end of the chain).

Chapter 7 Using PDML

310 P25-0240-49

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.

LK is a literal (type in as shown).

xx represents the last 2 characters of the linkpath name as
defined in the database description.

Considerations
♦ The primary data set contains the controlling primary record whose

key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

physical-key

Description Required. Points to a field containing the key of the primary record
controlling the chain. The PDM uses this key to link from a primary
record to a related record.

Format Variable-length as defined on the Directory

PDML commands

Programming Guide 311

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords(*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following is an example of a data item list:
 BIND*CODE=AB*ORDRCODEORDRCUSTORDRPRODEND.

Chapter 7 Using PDML

312 P25-0240-49

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the physical
key in the data item list, its value must be the same in both the data
area and physical key parameters.

endp

Description Required. Delimits the parameter list and indicates the record holding
function.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General consideration

 When the reference parameter contains END. and the list of records has
been completely processed, any further related data set commands
return an IVRP (Invalid Reference Parameter) status code.

PDML commands

Programming Guide 313

READX
Use READX (Read Index) to read either a primary or related record and
write it to the data area according to the data item list. The PDM locates
the record using the index specified in the OPTIONS parameter.

Use BEGN in the QUALIFIER parameter to provide direct access to a
record using the full or partial key supplied in the QUALIFIER parameter.
The PDM automatically replaces BEGN with NEXT.

Continue processing by reissuing READX without changing the qualifier
parameter. READX retrieves records in ascending or descending order
depending on the direction specified in the OPTIONS parameter. When
the QUALIFIER parameter contains END., the last record in the data set
has been processed.

READX status, data-set, options, qualifier, area-length,
data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

314 P25-0240-49

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

options

Description Required. Specifies a list of parameters concerned with holding single or
multiple records.

Format Variable-length field

Options SECKEY= (xxxxSKyy)
Required. Specifies the secondary key to be used for the READX
function where:

 () = Required parentheses

 xxxx = Data file name

 SK = Invariable, enter as shown

 yy = Secondary key identifier

 You can shorten the SECKEY keyword to SK.

DIRECTION= FORWARD F or REVERSE R
Optional. Instructs the PDM to read secondary keys in either
ascending or descending order provided your DBA specified both
forward and reverse sorting during secondary key definition. The
default DIRECTION value is FORWARD. If the DBA specified only
one sort direction, you must specify the same option parameter or the
PDM returns an error. If you want to change direction part way
through a read, set the function field in the qualifier to REBD. You
can shorten the DIRECTION keyword to DR.

UNIX FORWARD and REVERSE are always supported regardless of the
direction specified in the secondary key definition. REBD is
supported for compatibility but is not required to change direction.
REBD is equivalent to BEGN.

PDML commands

Programming Guide 315

KEYCOUNT= YES Y or NO N
Optional. Instructs the PDM to count the number of records in an
index file containing the key value specified. When this parameter is
set to YES, it causes the PDM to return 4 in the size parameter and
the count as a 4-byte binary integer in the data area. No records are
retrieved. The default keycount value is NO. You can use this option
in conjunction with all other options.

 You can shorten the KEYCOUNT keyword to KC.

KEYMATCH= EQUAL EQ, EQUAL NEXT EN, NEXT NX
Optional. Specifies key match options for reads, allowing the
application to match the full or partial key supplied with:

 EQUAL EQ (equal values only (the default))

 EQUAL NEXT EN (equal value, or next value)

 NEXT NX (next value)

 If you supply the partial key, you may omit a character from the right,
but you must provide the number of characters specified in the length
portion of the qualifier parameter.

 With EN, or NX, the next value depends on the sort direction. For
keys sorted in forward direction, EN matches values that are greater
than or equal to the key supplied and NX matches values that are
greater than the key supplied. For keys sorted in reverse direction,
EN matches values that are less than or equal to the key supplied,
and NX matches values that are less than the key supplied.

Chapter 7 Using PDML

316 P25-0240-49

 You can shorten the KEYMATCH keyword to KM.

 UNIX
KEYMATCH= STRING ST When STRING ST (string search) is used,

the left-justified key value in the qualifier is used as the search string.
The index will be searched in the direction indicated by the
DIRECTION parameter. Each key found in the index will be
searched for the specified string. Only records whose keys contain
the string will be returned. As with all READX operations, the
qualifier will be returned with NEXT in the first 4 positions.
Subsequent calls with NEXT in the qualifier will continue the string
search from the last key found in the secondary key index. It is not
necessary to use the Mask option with string search. If masking is
used, only those characters preceding the first mask character in the
key will be used as the string value.

UNIX
MASK= YES Y or NO N Optional. Specifies whether the PDM should use

the key value in the qualifier parameter as a literal value or a masked
value. The default is NO, implying that the key value is a literal value.
When set to YES, the key value must be a full-length secondary key
masked value. See the Qualifier Parameter for “READX” on
page 314 for the rules of key mask construction.

 You can shorten the MASK keyword to MK.

Considerations

♦ You can specify any or all of the option parameters separated by
commas and terminated by END.

♦ You can specify each option more than once, but the PDM uses only
the last occurrence.

♦ The following is an example:
 SK=(xxxxSKyy),DR=R,KM=EN,KC=N,END.

PDML commands

Programming Guide 317

qualifier

Description Required. Specifies parameters concerned with processing serial
records.

Format A variable-length field with the following format:
qqqqnnnnrrrrsssskkkkkkk...

Options The following table lists the parameter values that can be used with
READX.

Value Format Meaning

qqqq BEGN New read (implicit bind of options).
 NEXT Continue with read.
 REBD Rebind the qualifier (used for direction change).
 END Release all context when passed. End of index

has been reached when returned.
nnnn (none) Reserved for internal use—do not modify.

For UNIX, this field is the index context id.
rrrr (4-byte binary integer) RRN of data record returned.
ssss (numeric integer) Size of input value for secondary key.
kkkkkkk... (value) Input value for secondary key.

Chapter 7 Using PDML

318 P25-0240-49

Consideration

UNIX MASK= YES A full-length kkkk can be masked by using MASK=YES in
the options parameter and using the masking characters as described
below within the kkkk. The search is performed by reading sequentially
through the index and comparing each key returned to the masked kkkk
value supplied. If a match is found, the corresponding record in the
dataset is read and returned to the application program. If a match is not
found, the next sequential key is read from the index. This mechanism
can obviously cause extended delays while a search is being performed.
Exercise caution in building and using masked kkkk values, especially
against large datasets. The construction of the mask should specify the
minimal search required to achieve your data-retrieval goal.

A mask can consist of any valid ASCII value. The characters &, #, and
@ in the value have special meanings to the mask processor. All other
characters in the mask mean that the secondary key value must match
exactly in those positions to qualify for selection. The comparison is
made as if all bytes are character. There are no considerations for
binary, packed, zoned, and so on. The following lists the special
meaning given to the mask characters:

♦ & Any valid ASCII value can be in this position of the secondary key.

♦ # A decimal digit 0–9 must be in this position of the secondary key.

♦ @ An uppercase or lowercase character must be in this position of
the secondary key.

The following are examples:

♦ The mask B100###AA will return all records with keys B100 followed
by any three numeric digits and ending with AA. A forward search
will end when the first record beginning with a character greater than
B is encountered. A reverse search will end when the first record
beginning with a character less than B is encountered.

♦ The mask &100###AA will return all records with any alphanumeric
character in the first position followed by 100 followed by any three
numeric digits followed by AA. This mask will cause a scan of the
entire secondary key index for the dataset.

As with all READX operations, the qualifier will be returned with NEXT in
the first 4 positions. Subsequent calls with NEXT in the qualifier will
continue the masked search from the last key found in the secondary key
index.

PDML commands

Programming Guide 319

area-length

Description Required. For the KEYCOUNT function, the PDM returns the value of 4,
meaning there are 4 bytes in the data area which contain the
KEYCOUNT value.

Format 4-byte binary integer

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Chapter 7 Using PDML

320 P25-0240-49

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Physical keys (CUSTCTRL)

- Record codes (ORDRCODE)

- Special data item processing keywords (**BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ The following are two examples of data item lists:
 CUSTCTRLCUSTADDRCUSTCREDEND.

 BINDORDRCUSTORDRPRODEND.

PDML commands

Programming Guide 321

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the
physical key in the data item list, its value must be the same in both
the data area and physical key parameters.

Chapter 7 Using PDML

322 P25-0240-49

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Holds the record after it is read

RLSE Releases the record after it is read

General consideration

UNIX Index context is stored in DATBAS for the caller. The index context area
is used by the READX DML function to relocate the position in the index
from which a NEXT QUALIFIER function is to be performed. The index
qualifier value is established following the execution of a READX DML
function containing a BEGN QUALIFIER function. Any number of index
context areas may be used. A new index context area is allocated each
time an initialized QUALIFIER parameter (for example, the index context
id field of the QUALIFIER is set to NULL or spaces) is passed to the
READX DML function. This allows the calling program to maintain
control of the number and use of each context area. The index context id
field of the QUALIFIER is used to associate a specific context area with a
particular READX DML call. By maintaining multiple QUALIFIER
parameters in the application program, it is possible to have an index
context for each index in use by the application or even multiple contexts
for the same index. All index context areas are deallocated on SINOF.

PDML commands

Programming Guide 323

RESET
Use RESET to use the Task Log File to back out any database updates
performed by the current task since the most recent COMIT. This backs
out the effect of the current transaction.

The PDM accesses the before images in the Task Log File area for this
program and reapplies them to the database. The PDM then releases all
resources held by the issuing task and resets the Task Log File area for
this task.

UNIX All read-ahead buffers are released.

RESET, status, area-length, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

324 P25-0240-49

area-length

Description Required. Specifies to the PDM the length of the data to be returned
from the log file.

Format 4-byte binary integer

Considerations
♦ If no data is to be retrieved by RESET, the area-length may be set to

zero.

♦ This value must be equal to or greater than the area-length specified
in the program when the previous COMIT was performed.

data-area

Description Required. An area to receive the data stored in the log file by the
previous COMIT function.

Format Variable-length field with a length large enough to receive the data
restored.

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations
♦ When you perform a RESET, all records that have been held by this

program since the most recent COMIT point are released and may
be used by other currently active programs.

♦ If a COMIT has not been done since the SINON, the task will be
reset to the SINON.

♦ If task logging is not active, this command releases any resources
held by the issuing task.

♦ The area length should be greater than or equal to the maximum
length specified in corresponding COMIT commands.

PDML commands

Programming Guide 325

RQLOC
Use RQLOC (Request Location) to accept a key value as input and
generate an RRN as output. RQLOC performs no I/O operations. The
RRN is the physical location within the primary file of the record whose
key value is in the physical-key parameter.

Using this function, you can build a data set of physical keys and their
respective RRNs. This data set could be sorted by RRN and the physical
keys, then processed at maximum speed against the data set.

RQLOC, status, data-set, physical-key, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations
♦ The value of the status code indicates either the successful

completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

Chapter 7 Using PDML

326 P25-0240-49

physical-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this key to locate a primary record.

Format Variable-length as defined on the Directory

Consideration During the command processing, if the physical-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the physical-key field
name in the data area for this parameter, rather than define a separate
field.

data-area

Description Required. A field that receives an RRN value.

Format 4-byte binary integer

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ The specified data set must be a primary data set.

♦ The data set need not be opened.

♦ The data area should be defined as a 4-byte binary number.

♦ The program must be signed on to SUPRA Server.

PDML commands

Programming Guide 327

SINOF
Use SINOF (Sign off) to close all data sets open to this task and
disconnect the program from SUPRA Server. If any before-image
records are contained in the task log area for this program, which signify
database updates without a subsequent COMIT, a COMIT is performed
as part of the SINOF processing.

SINOF, status, access-control, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

328 P25-0240-49

access-control

Description Required. Defines the options and data sets used for the current
program run.

Format Variable-length field containing the following:
 -------REALM------- -------REALM-------

FIELD PROGM COMPILED ACCESS FILLER DATA DATA STATUS DATA DATA STATUS END.
NAME NAME DBASE MODE SET SET SET SET
 DESC NAME MODE NAME MODE

FIELD 8 6 6 2 4 4 4 4 4 4 4
LENGTH

EXAMPLE PRODWK PRODDB UPDATE .. PROD SHRE CUST PRIV END.

PROGRAM NAME
The 8-character name of the program.

COMPILED DATABASE DESCRIPTION
The 6-character name of the compiled database description.

ACCESS MODE
The 6-character field identifying the intent of the program. Must be
one of the following:

- RDONLY Only read functions are permitted.

- SINGLE Single thread the database and turn off logging and
record holding. If you use this option, your program should not
include reset logic. In addition, if your program runs into
problems after updates are made to data, you should restore the
database files.

No other task may sign on while a single-mode task is signed on.

- UPDATE All PDML functions are permitted.

PDML commands

Programming Guide 329

FILLER
A 2-character field reserved for future use (code **).

REALM
A group of 12-character entries consisting of DATA SET NAME,
DATA SET MODE, and STATUS—one for each data set in the
database required for this program. END. terminates REALM.

REALM is optional. If REALM is specified, the files are opened at
SINON. If REALM is not specified, the files will be opened
dynamically, as specified by any file-oriented PDML command
(ADD-M). When files are opened dynamically, the DATA SET
MODE will default to SHRE (see below).

DATA SET NAME
A 4-character field containing a data set name as defined in the
SUPRA Server compiled database description.

DATA SET MODE
A 4-character field defining the mode of data set sharing for the data
set in this entry. Permitted modes are:

- SHRE The data set may be simultaneously read and updated by
other programs. This is the default mode.

- PRIV The data set is exclusively assigned to this program; no
other program can write to it. Other tasks may read it.

- RDLY This mode is valid only in combination with an access
mode of UPDATE. It specifies that the data set is to be
accessed for read-only.

STATUS
A 4-character field used to return a status for each data set opened.
After SINON, this field contains **** if the data set has been opened
successfully. If it was not opened successfully, this field contains an
error status code indicating the cause of failure (*MIO, *SIO, FNTF,
IOER, IVTF, LOCK, MODE, or DUPO). For more information on
these error statuses, refer to the SUPRA Server PDM Messages and
Codes Reference Manual (PDM/RDM Support for UNIX & VMS),
P25-0022.

END.
A 4-character field to terminate REALM.

Chapter 7 Using PDML

330 P25-0240-49

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ All subsequent commands except SINON return a status of NOSO,
indicating you need to SINON. A new SINON can specify the same
options or different options from the previous SINON.

♦ After SINOF, the data set status field contains **** if the data set has
been closed successfully. If the data set has not been closed
successfully, an error status code is returned.

♦ If any data set status returned in the REALM area is not ****, then the
overall status of SINOF is set to the first error status in the REALM.
You should then check each data set status to identify which one(s)
failed to close.

♦ If an I/O error is indicated anywhere in the REALM, then the overall
status of SINOF is set to IOER, indicating an I/O error.

♦ When task logging is active and the program exits or abends without
performing a SINOF, the PDM performs a RESET and SINOF.

♦ The content of the access-control parameter should be identical to
the access-control parameter used at SINON time. See “SINON” on
page 332 for a discussion of its format.

♦ If a data set specified in the REALM registers an error, SUPRA
Server returns the relevant error code in the data set status field
within REALM. If a data set not specified in the REALM but opened
with a default mode of SHRE registers an error, the details are
displayed on the operator’s console.

PDML commands

Programming Guide 331

SINON
SINON (Signon) must be your program’s first call to SUPRA Server. Use
SINON to connect your application program to the PDM and to perform
internal initialization. It also enables your program to specify which data
sets it will access, the mode of access and the type of data set sharing
needed.

SINON, status, access-control, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

332 P25-0240-49

access-control

Description Required. Defines the options and data sets used for the current
program run.

Format Variable-length field containing the following:
 -------REALM------- -------REALM-------

FIELD PROGM COMPILED ACCESS FILLER DATA DATA STATUS DATA DATA STATUS END.
NAME NAME DBASE MODE SET SET SET SET
 DESC NAME MODE NAME MODE

FIELD 8 6 6 2 4 4 4 4 4 4 4
LENGTH

EXAMPLE PRODWK PRODDB UPDATE .. PROD SHRE CUST PRIV END.

PROGRAM NAME
The 8-character name of the program.

COMPILED DATABASE DESCRIPTION
The 6-character name of the compiled database description.

ACCESS MODE
The 6-character field identifying the intent of the program. Must be
one of the following:

- RDONLY Only read functions are permitted.

- SINGLE Single thread the database and turn off logging and
record holding. If you use this option, your program should not
include reset logic. In addition, if your program runs into
problems after updates are made to data, you should restore the
database files.

No other task may sign on while a single-mode task is signed on.

- UPDATE All PDML functions are permitted.

PDML commands

Programming Guide 333

FILLER
A 2-character field reserved for future use (code **).

REALM
A group of 12-character entries consisting of DATA SET NAME,
DATA SET MODE, and STATUS—one for each data set in the
database required for this program. END. terminates REALM.

REALM is optional. If REALM is specified, the files are opened at
SINON. If REALM is not specified, the files will be opened
dynamically, as specified by any file-oriented PDML command
(ADD-M). When files are opened dynamically, the DATA SET
MODE will default to SHRE (see below).

DATA SET NAME
A 4-character field containing a data set name as defined in the
SUPRA Server compiled database description.

DATA SET MODE
A 4-character field defining the mode of data set sharing for the data
set in this entry. Permitted modes are:

- SHRE The data set may be simultaneously read and updated by
other programs. This is the default mode.

- PRIV The data set is exclusively assigned to this program; no
other program can write to it. Other tasks may read it.

- RDLY This mode is valid only in combination with an access
mode of UPDATE. It specifies that the data set is to be
accessed for read-only.

STATUS
A 4-character field used to return a status for each data set opened.
After SINON, this field contains **** if the data set has been opened
successfully. If it was not opened successfully, this field contains an
error status code indicating the cause of failure (*MIO, *SIO, FNTF,
IOER, IVTF, LOCK, MODE, or DUPO). For more information on
these error statuses, refer to the SUPRA Server PDM Messages and
Codes Reference Manual (PDM/RDM Support for UNIX & VMS),
P25-0022.

END.
A 4-character field to terminate REALM.

Chapter 7 Using PDML

334 P25-0240-49

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ You can perform another SINON after a SINOF (to change access
mode).

♦ If any data set status returned in the REALM section is not ****, then
the overall status of SINON is set to the first error status in the
REALM. You should then check each data set status to identify
which one(s) failed to open.

♦ If an I/O error is indicated anywhere in the REALM, the overall status
of SINON is set to IOER, indicating an I/O error.

♦ Never specify the log file names in the REALM parameter of the
SINON. SUPRA Server determines if task or function logging is
required and automatically opens the log files.

♦ See the following table for the permitted uses of SINON access
modes. The second following table shows the effects of the various
combinations on the issuing task and other tasks.

♦ During SINON, SUPRA Server uses the REALM portion of the
access-control parameter to open the data sets in the specified
mode. If the program then attempts to use a data set that has not
been specified in REALM, the PDM automatically opens that data set
with a data set mode of SHRE.

This means that it is only necessary to specify the files that require RDLY
or PRIV data set modes in the REALM. Existing PDML programs
operate without modification.

PDML commands

Programming Guide 335

Task access
mode

Data set
access mode

Permitted use

RDONLY SHRE This task may only use read-only functions with this
data set. The data set may be simultaneously
accessed by other tasks.

UPDATE SHRE This task may issue any function with this data set.
The data set may be simultaneously accessed by
other tasks.

RDONLY PRIV This task may only use read-only functions with this
data set. The data set is exclusively assigned to this
task, and no other task may have update access to it.
Other tasks may read it.

UPDATE PRIV This task may issue any standard function with this
data set. No other task may have update access to it.
Other tasks may read it but not with RDONLY/PRIV.

UPDATE RDLY This task may issue read-only functions to this data set
but may update other data sets if SHRE or PRIV is
specified for those data sets. A data set with a mode
of RDLY can be accessed by another task in UPDATE
PRIV mode.

VMS ♦ Under normal circumstances with a prefixed database, the logical
name CSI_PREFIX is only translated the first time the PDM is
accessed by a client application. When the logical name
CSI_REINIT_ON_SINON is defined as TRUE, then the logical name
CSI_PREFIX is translated each time the SINON command is used.
Depending on the frequency of the SINON/SINOF commands, this
could cause a small performance degradation.

Chapter 7 Using PDML

336 P25-0240-49

 TASK A

TASK B

RDONLY
SHRE

RDONLY
PRIV

UPDATE
SHRE

UPDATE
PRIV

UPDATE
RDLY

RDONLY SHRE

A: READ
B: READ

A: READ
B: READ

A: UPDATE
B: READ

A: UPDATE
B: READ

A: READ
B: READ

RDONLY PRIV

A: READ
B: READ

A: READ
B: READ

A: UPDATE
B: LOCK

A: UPDATE
B: LOCK

A: READ
B: READ

UPDATE SHRE

A: READ
B: UPDATE

A: READ
B: LOCK

A: UPDATE
B: UPDATE

A: UPDATE
B: LOCK

A: READ
B: UPDATE

UPDATE PRIV

A: READ
B: UPDATE

A: READ
B: LOCK

A: UPDATE
B: LOCK

A: UPDATE
B: LOCK

A: READ
B: UPDATE

UPDATE RDLY

A: READ
B: READ

A: READ
B: READ

A: UPDATE
B: READ

A: UPDATE
B: READ

A: READ
B: READ

Task A signs-on first, and task B signs-on next.

A: READ means task A can read this data set.

A: UPDATE means task A can read and update this data set.

B: READ means task B can read this data set.

B: UPDATE means task B can read and update this data set.

B: LOCK means task B gets a LOCK status on this data set on
SINON.

PDML commands

Programming Guide 337

WRITM
Use WRITM (Write Primary) to update a previously read primary record.
SUPRA Server moves the required data items from the data area and
rewrites the record.

WRITM, status,data-set,physical-key,data-item-list,data-area,endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

Chapter 7 Using PDML

338 P25-0240-49

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

physical-key

Description Required. Specifies the physical key of the appropriate record on a
primary or related data set.

Format Variable-length field

Consideration The PDM determines a Relative Record Number (RRN) for each record
by performing a calculation on the physical key’s value. This process is
the relative address calculator. The PDM uses the RRN to add or read
the primary record. The length of the physical key for the relevant
primary data set is defined in the compiled database description. When
you are performing a related record function, this parameter specifies the
key of the controlling primary record.

PDML commands

Programming Guide 339

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations

♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Special data item processing keywords(**BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ Data items not coded in the data item list are not changed.

♦ The following is an example of a data item list:
 CUSTADDRCUSTCREDEND.

Chapter 7 Using PDML

340 P25-0240-49

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the
physical key in the data item list, its value must be the same in both
the data area and physical key parameters.

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ Data items not coded in the data item list are not changed.

♦ You cannot modify the physical key using WRITM. To change the
physical key, use DEL-M to delete the record, and then use ADD-M
to add it with the new key. See “DEL-M” on page 276 for information
about DEL-M and “ADD-M” on page 238 for information about
ADD-M.

PDML commands

Programming Guide 341

WRITV
Use WRITV (Write Related) to update the related record whose RRN is
in the reference parameter. SUPRA Server moves the required data
items from the data area and rewrites the record.

WRITV, status, data-set, reference, linkpath, physical-key,
 data-item-list, data-area, endp

status

Description Required. A field into which SUPRA Server places a status code
indicating the result of the command.

Format 4-character field

Considerations

♦ The value of the status code indicates either the successful
completion of the operation (****) or the nature of the failure. If more
than one error occurs, only the first error is reported. Certain
commands can make multiple violations. Correction of each of the
conditions in turn uncovers the next.

♦ Be sure to include logic in your program to handle and correct the
situation if a command fails or if the status code indicates some
special condition other than failure. Refer to the SUPRA Server PDM
Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022, for a complete list of PDML status codes.
See “Checking the status parameter” on page 359 for additional
information about the status parameter.

data-set

Restriction Required. Specifies the name of the required data set.

Format 4-byte field

Consideration The data set must be defined in the compiled database description. If the
data set is not defined, SUPRA Server returns FNTF in the status
parameter.

Chapter 7 Using PDML

342 P25-0240-49

reference

Description Required. Points to a field identifying the RRN of the specific record to
be updated. You place the RRN in this field to tell the PDM which record
to process.

Format 4 alphanumeric characters or a 4-byte binary integer

Consideration WRITV does not change the RRN of the record.

linkpath

Description Required. Specifies the name of the linkpath as defined in the compiled
database description. All related record functions use this parameter to
indicate which related record list is being processed.

Format 8-byte field with the following format:
ppppLKxx

where:

pppp represents the name of an associated primary data set.
LK is a literal (type in as shown).
xx represents the last 2 characters of the linkpath name as

defined in the database description.

Considerations
♦ The primary data set contains the controlling primary record whose

key is given in the primary key parameter. LKxx are the same
characters used in the reference parameter to identify the beginning
of the list. If you specify an invalid linkpath, the PDM returns MLNF,
indicating that the linkpath is not defined in the compiled database
description.

♦ There are two types of linkpaths: primary and secondary. A primary
linkpath is the linkpath specified in add commands—ADDVC,
ADDVA, ADDVB and ADDVR. Secondary linkpath refers to all other
linkpaths defined for a particular record in the compiled database
description.

♦ To choose the primary linkpath for a record, you need to know the
average length of each record list and the frequency of access along
each list. Generally, the primary linkpath should be either the longest
record list or the most frequently accessed. When using PDML,
always use the primary linkpath for ordering records.

PDML commands

Programming Guide 343

physical-key

Description Required. Points to a field containing the key of the record in the primary
file named by the linkpath parameter.

Format Variable-length as defined on the Directory

Considerations

♦ The PDM determines a Relative Record Number (RRN) for each
record by performing a calculation on the physical key’s value. This
process is the relative address calculator. The PDM uses the RRN
to add or read the primary record. The length of the physical key for
the relevant primary data set is defined in the compiled database
description. When you are performing a related record function, this
parameter specifies the key of the controlling primary record.

♦ This parameter specifies the key of the controlling primary record.

Chapter 7 Using PDML

344 P25-0240-49

data-item-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory. (You can also use
keywords in your data list, or as your entire data list, to perform special
functions; see “Data list parameter keywords” on page 233.)

Format Variable-length field in the following format:
 dataitem1dataitem2...dataitemnEND.

Considerations
♦ Always terminate this parameter with END.

♦ A data item must not be repeated in this list.

♦ The data item names in the list can include:

- Data items (PRODNAME)

- Record codes (ORDRCODE)

- Special data item processing keywords(*CODE=xx, **BIND**)

♦ The data item names in the list must not include:

- The ROOT field (CUSTROOT)

- Linkpaths (CUSTLK21)

♦ You can list data items in any order. They are processed in the order
listed, not necessarily the order within records on the data set. Only
the data items listed are processed. For maximum efficiency, list the
data item names in the order generated from the compiled database
description. See “Using extended data item processing” on page 369
for information on Extended Data Item Processing.

♦ If a data item list contains an invalid data item, the PDM returns
ENTF or IVEL. ENTF is returned if the data set part of the name is
valid but the data item does not exist. IVEL is returned when the data
item is not in the database for the data set concerned or when the list
is invalid for the data record being processed.

♦ Data items not coded in the data item list are not changed.

♦ The following is an example of a data item list:
 BIND*CODE=AB*ORDRCUSTORDRPRODEND.

PDML commands

Programming Guide 345

data-area

Description Required. An input/output area for the data items named in the data item
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data item list serves as a map of the data area. The structure
and characteristics of the data area must conform exactly to the
compiled database description definition of the data items named in
the data item list.

♦ The data-area parameter and the data-item-list parameter have
corresponding fields. The data item list holds names, and the data
area holds a value for each of those names. If you name the
physical key in the data item list, its value must be the same in both
the data area and physical key parameters.

endp

Description Required. Points to a field that delimits the parameter list.

Format 4-character field

Options END. Delimits the parameter list (same effect as RLSE)

RLSE Delimits the parameter list (same effect as END.)

General considerations

♦ Data items you do not code in the data item list are not changed.

♦ You cannot modify physical keys or record codes using WRITV. Use
ADDVR to modify these fields.

Chapter 7 Using PDML

346 P25-0240-49

8
Optimizing your PDML program

This chapter summarizes common programming procedures that will
help you make the best use of your PDML program. Some of these
procedures are:

♦ Linking your application program

♦ Using a logical unit of work

♦ Processing primary and related data sets

♦ Processing data sets serially

♦ Testing database programs

♦ Processing data lists

♦ Reviewing example programs

Under VMS, coding RDML and PDML commands in one program can
cause database corruption.

 Programming Guide 347

Linking your application program
You must link all application program object modules.

VMS You must reference the link options file which provides access to the
Physical Data Manager (PDM) shareable image. To do this, use the
following command in the link options file:
 SUPRAPDM/SHAREABLE=NOCOPY

You can use full file specifications to link modules from different
directories. For more information on linking programs with shareable
images, refer to your VMS Linker Reference Manual.

Chapter 8 Optimizing your PDML program

348 P25-0240-49

UNIX You must link your application program with one of three database
access programs located in the bin subdirectory of the SUPRA PDM
Install directory. Use the following path to locate these programs:
 /supra1/$SUPRA1_RELEASE_NUMBER/bin

The database access programs are:

♦ csidatbas.o This is a statically-linked, multitask PDM database
access program. Your application must be re-linked when a new
version of this database access program is installed.

♦ csidatbas.sl This is a dynamically-linked, multitask PDM database
access program. Your application does not need to be relinked when
a new version of the database access program is installed. The new
csidatbas.sl replaces the old one in the shared library directory.

♦ csibatbas.o This is a high-performance statically-linked, single-task
PDM database access program for batch applications. Your
application must be relinked when a new version of this database
access program is installed. For more details on single-task PDM,
refer to the SUPRA Server PDM System Administration Guide
(UNIX), P25-0132.

In addition to linking your application with one of the preceding database
access programs, you must link your application with one of the following
internal user exit programs (also located in the bin subdirectory of the
SUPRA PDM Install directory):

♦ csiintuser.o Statically-linked internal user exit program.

♦ csiintuser.sl Dynamically-linked internal user exit program.

The source to the internal and external user exit programs is located in
the src subdirectory of the SUPRA PDM Install directory. For details on
using and writing internal and external user exits, refer to the SUPRA
Server PDM System Administration Guide (UNIX), P25-0132.

Linking your application program

Programming Guide 349

UNIX Example

The following UNIX command will compile the C program progname.c,
link the object with csidatbas.sl and csiintuser.sl, and produce the binary
executable file progname.
cc -o progname progname.c /supra1/$SUPRA1_RELEASE_NUMBER
/bin/csidatbas.sl/supra1/$SUPRA1_RELEASE_NUMBER/bin/csiintuser.sl

To compile and link a COBOL program, use the following command:
cob -xo progname progname.cob -U /supra1/$SUPRA1_RELEASE_NUMBER/

bin/csidatbas.sl
/supra1/$SUPRA1_RELEASE_NUMBER/bin/csiintuser.sl

It may be necessary to link with the -ll option when linking your
application with the single-task PDM database access program
(csibatbas.o).

Using logical units of work
A logical unit of work is a group of database requests which must all be
completed together. These requests must be concluded by a commit—
COMIT command. Using a logical unit of work enables you to enter a
complete transaction. SUPRA Server is designed to process
transactions or logical units of work.

Reserving resources
Before your task reserves any resources for updates, all conditions for a
logical unit of work must be met. No other task can use these resources
until your task frees them at the end of the logical unit of work. To
prevent unnecessary resource contention between tasks, limit the time
your task holds resources.

Chapter 8 Optimizing your PDML program

350 P25-0240-49

Implementing a logical unit of work
You can implement a logical unit of work by using a standard program
structure which includes COMIT and RESET commands. By using good
design techniques, you can avoid unnecessary RESET commands. This
will enhance your program efficiency. The following example illustrates a
sample program structure for a logical unit of work:
INITIALIZATION (SIGN-ON)

 While not finished, do:

 screen input and validation

 Database Update Processing (RDML or PDML)

 If error, then RESET

 else COMIT

 end

 TERMINATION (SIGN-OFF)

Once the program is initialized, then data is input from the screen and
validated. Initialization (sign on) does the following:

♦ Identifies the new task to the system

♦ Logically opens the necessary data sets

♦ Allocates a unique internal task identifier

VMS You can process the database using either RDML or PDML.

UNIX Process the database using PDML.

Your program can either update database records or perform read-only
database calls. If your program updates database records, the records
are held and cannot be accessed by other programs.

If an error is detected while updating, you can remove the updates by
issuing RESET. If no errors are found, issue COMIT to free any held
records. Updated records are now permanent; they may no longer be
removed by RESET. During the update process, there should be no
further interaction with the user. This process should be as short as
possible.

Using logical units of work

Programming Guide 351

Understanding deadlocks and how to prevent them
Two transactions might simultaneously request the same database
records. This situation is called deadlock, deadly embrace or fatal
embrace. To avoid this, all logical units of work should request records in
the same sequence. This deadlock can be resolved if one transaction
releases all held resources.

Contention between transactions degrades performance because it may
be necessary to reexecute functions that cannot complete because the
required resource (or records) is being used by another transaction.
Therefore, design transactions so the same database records are
required by different transactions as infrequently as possible. The
following figure illustrates this process.

TRANS-A holds Record-A and starts processing. Meanwhile, TRANS-B
holds Record-B and starts processing. At some point TRANS-A tries to
hold Record-B. Since it is already held by TRANS-B, TRANS-A waits for
Record-B to be released.

During processing, TRANS-B tries to hold Record-A, which is held by
TRANS-A. If TRANS-B waits, neither TRANS-A nor TRANS-B will
complete since they are waiting on each other.

Record-A

TRANS-A TRANS-B

Record-B

Held Second Request

HeldFirst Request
(waits)

If you receive a HELD status, indicating the requested record is being
held by another transaction, you should do the following:

♦ Wait and retry a few times. If a HELD status is still received, this
might indicate a deadlock.

♦ Reset the transaction. This backs out or undoes all database
requests in the current logical unit of work—since the last commit.
This also releases all records held, allowing the deadlocked task to
complete.

Chapter 8 Optimizing your PDML program

352 P25-0240-49

Handling errors in a logical unit of work
Errors in a logical unit of work are handled differently, based on where
the error was detected:

♦ Detected by the program. Because the logical unit of work is
incomplete when the error is detected, all the processing done before
the error must be undone by issuing a RESET. Your program can
either start a new logical unit of work or sign off, depending on how
severe the error was.

♦ Not detected by the program. SUPRA Server ensures that each
logical unit of work is always complete. Therefore, if task logging is
active and SUPRA Server finds that a program is terminating without
signing off, the PDM performs a RESET and then signs off.

Using logical units of work

Programming Guide 353

Managing your application program
The following sections discuss areas relevant to every application
program you will write to access SUPRA Server. These include
parameter list definitions, initialization and termination requirements, task
management, checking the status parameter after the execution of a
SUPRA Server command, and recovery guidelines.

Communicating with SUPRA Server
You communicate with SUPRA Server by using CALL statements. Use
standard parameter names when you code your CALL statements. This
provides fewer maintenance problems since programs are more easily
understood by other programmers. The following are common
parameters for each language.
Common COBOL parameters
U-FUNCTION PIC X(5)

U-STATUS PIC X(4)

U-ACCESS-CONTROL PIC X(n)

U-DATA-SET PIC X(4)

U-REFER PIC X(4)

U-QUALIFIER PIC X(4)

U-LINKPATH PIC X(8)

DDDD-KEY PIC X(n)

DDDD-LIST PIC X(n)

DDDD-AREA PIC X(n)

U-ENDP PIC X(4)

DDDD is the data set name.

The value of n depends on the database and the application.

Chapter 8 Optimizing your PDML program

354 P25-0240-49

Common FORTRAN parameters
CHARACTER*5 U_FUNCTION

CHARACTER*4 U_STATUS

CHARACTER*nn U_ACCESS_CONTROL

CHARACTER*4 U_DATA_SET

CHARACTER*4 U_REFER

CHARACTER*4 U_QUALIFER

CHARACTER*8 U_LINKPATH

CHARACTER*nn DDDD_KEY

CHARACTER*nn DDDD_LIST

CHARACTER*nn DDDD_AREA

CHARACTER*4 U_ENDP

DDDD is the data set name.

The value of n depends on the database and the application.

Common BASIC parameters
DECLARE STRING U_FUNCTION

DECLARE STRING U_STATUS

DECLARE STRING U_ACCESS_CONTROL

DECLARE STRING U_DATA_SET

DECLARE STRING U_REFER

DECLARE STRING U_QUALIFER

DECLARE STRING U_LINKPATH

DECLARE STRING DDDD_KEY

DECLARE STRING DDDD_LIST

DECLARE STRING DDDD_AREA

DECLARE STRING U_ENDP

DDDD is the data set name.

Managing your application program

Programming Guide 355

Parameter list definitions
When you identify the parameters in your CALL statement, follow your
installation’s conventions. This makes your program more readable and
makes debugging easier. For example:

COBOL
01 SINON PIC X(5) VALUE "SINON".

01 READM PIC X(5) VALUE "READM".

01 ENDP PIC X(4) VALUE "END.".

01 STATUS-OK PIC X(4) VALUE "****".

FORTRAN
CHARACTER*5 SINON

CHARACTER*5 READM

CHARACTER*4 ENDP

CHARACTER*4 STATUS_OK

DATA SINON/'SINON'/

DATA READM/'READM'/

DATA ENDP/'END.'/

DATA STATUS_OK/'****'/

BASIC
DECLARE STRING CONSTANT SINON = "SINON"

DECLARE STRING CONSTANT READM = "READM"

DECLARE STRING CONSTANT ENDP = "END."

DECLARE STRING CONSTANT STATUS_OK = "****"

Chapter 8 Optimizing your PDML program

356 P25-0240-49

Many installations standardize the data item list and data area
parameters that identify the data items to be used. For example:

COBOL
01 CUST-LIST.
 02 FILLER PIC X(8) VALUE "CUSTCTRL".
 02 FILLER PIC X(8) VALUE "CUSTADDR".
 02 FILLER PIC X(4) VALUE "END.".
01 CUST-AREA.
 02 CUST-NAME PIC X(20).
 02 CUST-ADDR PIC X(30).

FORTRAN
CHARACTER*20 CUST_LIST
STRUCTURE /CUST_AREA/
 CHARACTER*20 CUST_NAME
 CHARACTER*30 CUST_LIST
END STRUCTURE
DATA CUST_LIST/'CUSTCTRLCUSTADDREND.'/

BASIC
RECORD CL
 STRING CL1=8
 STRING CL2=8
 STRING CL3=4
END RECORD CL
DECLARE CL CUST_LIST
RECORD CA
DECLARE CL CUST_LIST
RECORD CA
 STRING CA1=20
 STRING CA2=30
END RECORD CA
DECLARE CA CUST_AREA
CUST_LIST: :CL1="CUSTCTRL"
CUST_LIST: :CL2="CUSTADDR"
CUST_LIST: :CL3="END."

This convention controls the data item list and data area definitions in a
source statement library. This ensures that all programs in a system
refer to the data by the same names. This is invaluable for program
maintenance.

Managing your application program

Programming Guide 357

Initialization and termination requirements
To access your SUPRA Server database, your application program must
first sign on to SUPRA Server using SINON. The data sets specified in
the REALM field of the SINON command are then opened. If your
SINON command is unsuccessful (if the status code returned is anything
other than ****, *MIO, *SIO), no other commands are accepted from that
task.

You must open data sets before you use any PDML command referring
to those data sets (except RQLOC). If only related data sets are
accessed, SUPRA Server requires the associated primary data sets to be
opened by the task as well.

To terminate processing of your SUPRA Server database, your
application program must issue the SINOF command. This releases all
the PDML resources assigned to the program and physically writes all the
updated records to disk. The data sets for this task are then logically
closed; they are no longer available to this task but might still be open for
other tasks.

Task management
SINON dynamically specifies the SUPRA Server environment for your
task to use. It specifies the database, the data sets within that database,
and the access and sharing requirements for those data sets. SINOF
releases the SUPRA Server resources claimed by the task in its previous
SINON to ensure database integrity. Every task that issues a successful
SINON to SUPRA Server must do the following before terminating:

♦ Issue a SINOF

♦ Check the status parameter returned from the SINOF

The SUPRA Server exit handler routine performs RESET and SINOF for
any task which fails to SINOF before terminating. Your program can
change its SUPRA Server environment by issuing a SINOF from its
current environment followed by a SINON to the new environment. To
maintain efficiency do not change the SUPRA Server environment
frequently.

Chapter 8 Optimizing your PDML program

358 P25-0240-49

Checking the status parameter
After executing a PDML command, the PDM moves a status code to the
status parameter to indicate the result of the command. Your application
program must check this parameter after every PDML command and
take appropriate action. Failing to check the status parameter is the
most common cause of failure.

When you write a program using SUPRA Server, you should expect
certain status codes to be returned. In some cases, successful
completion of the operation (a status code of ****) is expected from every
CALL to SUPRA Server. In other cases, several status codes are
expected, and the program’s subsequent processing depends on which
status code PDM returns. For example, on a READM command, if **** is
returned, the record is available to the user. If the PDM returns MRNF
(primary record not found), the record does not exist for the specified
physical key value.

In all cases, your program logic must handle all unexpected status codes
to ensure they are not ignored. Usually, the appropriate action for all
unexpected status codes returned is to produce a formatted report of the
PDML parameters that caused the problem.

Refer to the SUPRA Server PDM Messages and Codes Reference
Manual (PDM/RDM Support for UNIX & VMS), P25-0022, for a complete
list of PDML status codes.

Managing your application program

Programming Guide 359

Using standard primary data-set processing
“Using PDML” on page 227 describes the PDML commands in detail.
This section presents a few helpful notes to help you avoid common
pitfalls and to increase overall efficiency in primary data set processing.

Data items you must not refer to
You must not refer to or update the following data items in your data item
list. Such a reference could inadvertently change the contents of the file
and corrupt your database. If your program refers to these data items,
the SUPRA Server PDM produces a status code of IVEL (invalid data
item).

ppppROOT SUPRA Server uses this ROOT data item for
internal purposes.

ppppLKxx The PDM automatically updates and maintains the
linkpaths.

Chapter 8 Optimizing your PDML program

360 P25-0240-49

The ADD-M command
Frequent coding errors occur when using ADD-M because of bad
correlation between the physical key, data item list and data area. The
data-area parameter and the data-item-list parameter have
corresponding data items. The data item list holds names, and the data
area holds a value for each of those names. You must include the
record’s physical key name in the data item list. Therefore, you must
include its value in the corresponding position of the data area. The
physical key cannot be blank or binary zeros.

You may define the physical key and data-area parameter as the same
location within your application program to avoid any problems. This
guarantees correlation and ensures that the physical key is always written
on the new record. For example:
MOVE "ADD-M" TO FUNCTION.

MOVE "P001" TO DATA-SET.

CALL "DATBAS" USING

 FUNCTION

 STAT

 DATA-SET

 P001-CTRL

 P001-DATA-ITEMS

 P001-DATA

 ENDP.

where the definitions are:
01 P001-DATA-ITEMS

 03 FILLER PIC X(8) VALUE "P001CTRL".

 03 FILLER PIC X(8) VALUE "P001REST".

 03 FILLER PIC X(4) VALUE "END.".

01 P001-DATA.

 03 P001-CTRL PIC X(5).

 03 P001-REST PIC X(100).

Using standard primary data-set processing

Programming Guide 361

Structural maintenance during serial processing
You should avoid using add and delete logic on a primary data set while
processing it serially with the RDNXT command. Use caution because
the application program may not have serial access to certain records
after maintenance is performed.

For example, the current record (retrieved serially) might have a synonym
which has not yet been read. If the current record is deleted, the PDM
automatically optimizes the data set and might move the synonym
physically so it is unavailable for serial access.

To avoid this situation, you should perform structural maintenance after
the serial processing is complete. This ensures that all records are
available for program analysis. The WRITM command executes
correctly in this situation since no record movement ever takes place.
This also applies if other users are doing updates.

Using standard related-data-set processing
This section presents a few considerations to help you avoid common
pitfalls and to increase efficiency in related data set processing.

♦ SUPRA Server automatically updates all linkages when you issue an
ADD command. The linkpath parameter in the PDML call is used as
the first reference point for PDM internal processing and is assumed
to be the primary linkpath.

♦ Each primary record connected to a related record has a linkpath and
a related key. The related key is the physical key of the
corresponding primary record. Therefore, to find the key of the
primary record to which a related record is connected, it is not
necessary to actually read the primary record.

♦ Related records for a given data set are all the same length, even
though they may have different formats. For efficiency, SUPRA
Server does not support variable length related records.

♦ If a related record is linked to more than one data set, you must code
the related key data item names in the data item list parameter and
provide their values in the data area. Otherwise, a BCTL status is
returned, indicating a blank or unidentified field specification.

Chapter 8 Optimizing your PDML program

362 P25-0240-49

The reference parameter
PDML uses the reference parameter as a positional indicator for list
processing. The reference parameter can have the following values,
some provided by your application program and some by SUPRA Server:

♦ LKxx This literal consists of the last 4 characters of the current
linkpath data item name and indicates that the first or last record of a
list is to be processed. This value is valid only for READV, READR,
ADDVC, ADDVA and ADDVB.

♦ RRN This is a 4-byte binary number which is the Relative Record
Number (RRN). The first record in the data set has an RRN of 1; the
third record has an RRN of 3; and so on.

♦ END. The PDM inserts the literal END. in the reference parameter
to indicate that the previous access to this list read the last record of
the list. No more records exist on the given linkpath for this physical
field. Only SUPRA Server may place END. in the reference
parameter. This value must be cleared from reference before
another command is called. END. is only returned by SUPRA Server
following a READV or a READR. Therefore, after each READV or
READR, your program should first check the status field for ****, and
then check for END. in the reference field.

Using standard related-data-set processing

Programming Guide 363

The following table shows the initial setting of the reference parameter
when you use the specified command.

Required action Command Set reference Resultant reference
Read first record in list READV LKxx RRN of the current record
Read next record in list READV (Not changed) RRN of the current record
Read next (end of list) READV (Not changed) END.
Read last record in list READR LKxx RRN of the current record
Read previous record in
list

READR (Not changed) RRN of the current record

Read previous (end of
list)

READR (Not changed) END.

Read a record directly READD RRN of the
desired record

No change

Update current record WRITV RRN of the
current record

No change

Add record before
current

ADDVB RRN of the
current record

RRN of the new record

Add record after current ADDVA RRN of the
current record

RRN of the new record

Add record at end of list ADDVA LKxx RRN of the new record
Add record at end of list ADDVC Ignored RRN of the new record
Add record at start of
list

ADDVB LKxx RRN at the new record

Change physical key or
record code of current
record

ADDVR RRN of the
current record

No change

Delete current record DELVD RRN of the
current record

RRN of the previous record
LKxx

Delete first record in list DELVD RRN of the first
record in list

Chapter 8 Optimizing your PDML program

364 P25-0240-49

It is important to repeat the conditions under which SUPRA Server
modifies the value of the reference parameter. The following table gives
the significant reference value changes after the execution of related
PDML commands. The beginning of this section defines the initial setting
of the reference parameter.

Function

Initial
setting of
reference

Final setting of reference

READV LKxx The final setting of the reference parameter depends on the status
code returned:
1. If the status code returned is ****, the reference parameter

contains one of the following:
A. The RRN of the current record in this related data set.
B. END. if no record exists for this physical field value.

2. If a status code other than **** is returned, the reference
parameter is not changed.

READV RRN The final setting of the reference parameter depends on the status
code returned:
1. If the status code returned indicates the READV command was

successful, the reference parameter contains one of the
following:
A. The RRN of a new record.
B. END. if an end-of-list condition has been reached.

2. If PDM returns a status code other than ****, the reference
parameter is not changed.

ADDVC,
ADDVA, or
ADDVB

LKxx or RRN The final setting of the reference parameter depends on the status
code returned:
1. If the status code returned indicates the ADDVC, ADDVA or

ADDVB command was successful, the reference parameter is
modified to point to the record just added.

2. If a status code of **** is returned, the reference parameter is
not changed.

DELVD rrrr The final setting of the reference parameter depends on the status
code returned:
1. If the status code returned indicates that the DELVD command

was successful, the reference parameter contains one of the
following:
A. The RRN of the previous record in this list—the record in

the list before the one just deleted.
B. LKxx if the record just deleted was the first in this list.

2. If a status code of **** is returned, the reference parameter is
not changed.

Using standard related-data-set processing

Programming Guide 365

Improving program efficiency
The following can help you maximize the efficiency of your program:
♦ ADDVA, ADDVB, and ADDVC are equally efficient, but keeping lists

in a logical sequence (using ADDVA and ADDVB) requires the
program to issue additional READVs (or READRs) to get the required
position. Therefore, carefully consider the need to have related lists
in sequence.

♦ The PDM attempts to keep all records within a list physically close
together on the disk. Multiple lists are allowed within one related data
set. This optimization cannot be maintained for all such lists at the
same time. SUPRA Server decides which list it will optimize the
storage allocation for. To do this, the PDM always assumes that the
linkpath specified in a given ADDVx command (ADDVA, ADDVB and
ADDVC) identifies the primary linkpath for that command.

 Ensure that the linkpath you code in any ADDV command is always
the primary linkpath for the related data set. To optimize retrieval
times, when using the READV or READR command, your application
program should specify the primary linkpath.

♦ Define variable formats in related records (coded related records) for
these reasons:
- To provide a powerful means of storing logically related data

items together in a database.
- To select and connect certain record formats to a given

relationship.
 To implement coded related records, specify a 2-byte record code for

each record in the related data set. When adding a coded record,
enter the record code in the user’s data area, and enter the rrrrCODE
data item name as a component of the data item list parameter in the
PDML CALL.

 When reading along a linkpath that connects multiple record types,
your program must determine the format of the retrieved records
either by verifying the contents of the RRN data item or by using a
code directed read (see “Code-directed reading” on page 370).

♦ Use short data item lists. Keep the sequence of the data item list the
same as the physical sequence of the data items in the record,
whenever possible.

♦ Use data item binding to search the data item list only the first time it
is used.

♦ The PDM modifies the reference parameter as discussed in “The
reference parameter” on page 363. Therefore, you must not modify it
unintentionally.

Chapter 8 Optimizing your PDML program

366 P25-0240-49

Understanding RDNXT serial processing
Use RDNXT for serial processing. It is an access method for large data
sets when the retrieved records are not known uniquely by key, and when
only the data actually existing on the data set(s) is to be processed.

Use RDNXT to:

♦ Scan a primary data set

♦ Set or reset a status field for all, or most, of its records

♦ Scan a primary or related data set to produce a data set suitable for
report processing

♦ Retrieve all the data from the database data sets for backup

When using RDNXT, remember the following:

♦ RDNXT operates serially and not sequentially. Therefore, it does not
process according to physical key values.

♦ RDNXT automatically reads all records, even though it returns control
to the program only when the records contain data.

♦ RDNXT provides full data independence.

Understanding RDNXT serial processing

Programming Guide 367

Testing database programs
Program testing in the database environment is more complex than in a
sequential file environment. This is because interrelationships are
inherent in a database structure, and the program’s actions may affect
multiple data sets in any one call statement. Furthermore, there is
always a temptation to test the program on the live or production
database. This can cause severe problems, even when you use logging.

If you take proper precautions and use simple guidelines, program testing
can be simplified. You can also maintain the integrity of a live or
production database. To do this, make a backup copy of the test
database before you test your program. The production and test
databases can be identical except for their names. These names are
referenced in SINON and SINOF, and in the file specification for the data
sets.

Use the following guidelines for program testing:

♦ Whenever possible, construct a mini database for testing purposes.
It should have the same logical characteristics as the live database
(data set names, database description names, data item names,
etc.) but should contain only a subset of the live database’s data
(about five to ten percent). You should periodically update the test
database to reflect the most recent data relationships in the live
database.

♦ Use the test database to test your programs. After you run your
program against the test database, check the program results. If
your program has corrupted the database or written erroneous data
on its data sets, the test database should be restored to its original
condition using the backup copy.

Chapter 8 Optimizing your PDML program

368 P25-0240-49

Using extended data item processing
Data item binding and code directed reading enhance the performance of
data item processing while maintaining complete data independence.
The general format of the data item list is:
dataitem1dataitem2...dataitemnEND.

You can supplement the data item notation with either the keywords
BIND or *CODE=xx, or a data item or sub-data-item name. The
following sections describe these keywords in detail.

Data-item binding
Data item binding increases the efficiency of SUPRA Server when
processing a user data item. It eliminates the database description data
item table look-up on all but the initial call to SUPRA Server for a specific
data item list. You can use data item binding for any function with a data
item list as one of its parameters. To use data item binding, place
BIND in front of the normal data item list. If you are also using code
directed reading (see “Code-directed reading” on page 370), **BIND**
must precede the first *CODE= statement. SUPRA Server recognizes
the characters **BIND** on the initial CALL and does the following:

♦ Performs the normal database description look-up

♦ Replaces the data item list entries

♦ Changes the **BIND** to *BNDxxxx, where xxxx is the identity of the
data set being accessed

After these steps complete, your program must not alter the contents of
this bound data item list. On subsequent calls to SUPRA Server, this
data item list selects the required data items without a full search through
the database description table.

Using extended data item processing

Programming Guide 369

Code-directed reading
Code directed reading is only for related data sets with coded records. It
allows you to retrieve selected records from a related data set based on
their record codes. Use code directed reading with the READV, READR,
READD and RDNXT. It modifies the data item list to incorporate the
required record codes. You may select any number of different record
codes, but they must occur before any other data items (except
BIND).

For each READV or READR issued, the PDM reads along the list of
records indicated by the specified linkpath. It returns the first record read
containing a code corresponding to one specified in the data item list.
Each subsequent use of the command with the same physical key
continues from the point in the list where the previous record was read.

Specify all record codes at the beginning of the data item list, before any
data item definitions. When you request more than one (but not all)
record types, specify the redefined data item. Do not use
sub-data-items.

Chapter 8 Optimizing your PDML program

370 P25-0240-49

PDML examples
You can use SUPRA Server with most programming languages. The
examples in this section show you how to implement PDML in COBOL,
PL/I and FORTRAN and C. Your Cincom representative can provide
further examples.

COBOL
 WORKING-STORAGE SECTION.
*
 01 CUST-KEY PIC X(6).

 01 CUST-LIST.

 03 FILLER PIC X(8) VALUE "CUSTNAME".

 03 FILLER PIC X(8) VALUE "CUSTCTYS".

 03 FILLER PIC X(4) VALUE "END.".

 01 CUST-AREA PIC X(80).

*
 01 INPUT-KEY PIC X(6).
*
 01 U-FUNCTION PIC X(5).

 01 U-STATUS PIC X(4).

 01 U-DATA-SET PIC X(4).

 01 U-ENDP PIC X(4).

*
*
 PROCEDURE DIVISION.

 A-1.

 MOVE "READM" TO U-FUNCTION.

 MOVE "CUST" TO U-DATA-SET.

 MOVE INPUT-KEY TO CUST-KEY.

 MOVE "RLSE" TO U-ENDP.

 CALL "DATBAS" USING

 U-FUNCTION

 U-STATUS

 U-DATA-SET

 CUST-KEY

 CUST-LIST

 CUST-AREA

 U-ENDP.

 PERFORM U-CHECK-STATUS.

* .
* .
* .

 U-CHECK-STATUS.

 .
 .
 .

PDML examples

Programming Guide 371

FORTRAN
CHARACTER*4 UENDP,USTAT,UDSET,CUST,RLSE

CHARACTER*5 READM,UFUNC

CHARACTER*6 CKEY

CHARACTER*20 CLIST

CHARACTER*80 CAREA

DATA READM/'READM'/

DATA CUST/'CUST'/

DATA CLIST/'CUSTNAMECUSTCTYSEND.'/

DATA RLSE/'RLSE'/

 .

 .

 .

UFUNC=READM

UDSET=CUST

READ(*)CKEY

UENDP=RLSE

CALL DATBAS (UFUNC,USTAT,UDSET,CKEY,CLIST,CAREA,UENDP)

IF (USTAT.NE.'****') GOTO 900

 .

 .

 .

Chapter 8 Optimizing your PDML program

372 P25-0240-49

PL/I
DECLARE DATBAS ENTRY OPTION (FORTRAN);

DECLARE 01 SUPRA_PARAMETERS,

 02 SUPRA_FUNCTION CHARACTER (5),

 02 SUPRA_STATUS CHARACTER (4),

 INITIAL (" "),

 02 SUPRA_DATA_SET CHARACTER (4),

 02 SUPRA_PHYSICAL_KEY CHARACTER (6),

 02 SUPRA_DATA_ITEM_LIST CHARACTER (20),

 02 SUPRA_WORK_AREA CHARACTER (80),

 02 SUPRA_END CHARACTER (4),

 INITIAL ("RLSE");

 .

 .

 .

 SUPRA_FUNCTION="READM";

 SUPRA_DATA_SET="CUST";

 SUPRA_DATA_ITEM_LIST="CUSTNAMECUSTCTYSEND.";

 GET LIST (SUPRA_PHYSICAL_KEY);

 CALL DATBAS (SUPRA_FUNCTION,

 SUPRA_STATUS,

 SUPRA_DATA_SET,

 SUPRA_PHYSICAL_KEY,

 SUPRA_DATA_ITEM_LIST,

 SUPRA_WORK_AREA,

 SUPRA_ENDP);

IF SUPRA_STATUS "****" THEN GO TO ERROR;

 .

 .

 .

PDML examples

Programming Guide 373

C
#define SUPRA_FUNCTION "READM"

#define SUPRA_ENDP "RLSE"

char SUPRA_STATUS [4];

char SUPRA_DATA_SET[] = "CUST";

char SUPRA_PHYSICAL_KEY[6];

char SUPRA_DATA_ITEM_LIST[]="CUSTNAMECUSTCTYSAND.";

char SUPRA_WORK_AREA[80];

 DATBAS (SUPRA_FUNCTION,

 SUPRA_STATUS,

 SUPRA_DATA_SET,

 SUPRA_PHYSICAL_KEY,

 SUPRA_DATA_ITEM_LIST,

 SUPRA_WORK_AREA,

 SUPRA_ENDPb/);

if (*(long*)SUPRA_STATUS != *(long*)"****")

 { supra_error(); /* perform error handling routine and
*/

 . /* anything else you want to do when
*/

 . /* you receive an invalid status code
*/

 }

Chapter 8 Optimizing your PDML program

374 P25-0240-49

A
Sample RDM programs (VMS)

This appendix provides sample RDM programs demonstrating the use of
RDML statements for COBOL, FORTRAN and BASIC. The example
programs are not intended to suggest any guidelines or standardization
of program structure or coding technique. They are presented in original
and expanded versions. The expanded version includes programmer
input and SUPRA Server/RDM output.

Sample COBOL RDM program
Input to the preprocessor

IDENTIFICATION DIVISION.
 PROGRAM-ID. LVDEMO.
*
*
**
* *
* THIS RELATIONAL DATA MANAGER PROGRAM DEMONSTRATES *
* MOST OF THE POSSIBLE RDML EXPANSIONS. *
* *
**
*
*
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
*
 01 INCLUDE ULT-CONTROL.
*
 01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).
*
 01 INCLUDE CUS-PRD (CUST-NO,PROD-NO).
*
 01 CONTACT INCLUDE PROD.
*
 01 GENERAL-VARIABLES.
*

 Programming Guide 375

 10 USER-ID PIC X(6) VALUE "DEMO94".
 10 USER-PASSWORD PIC X(8) VALUE "DEM-PASS".
 10 PROD-TRAN PIC X(4).
 10 PROD-MARK PIC X(4).
*
 01 INCLUDE PROD.
*
*
 PROCEDURE DIVISION.
*
 SIGN-ON-DEMO.
*
 SIGN-ON USER-ID.
*
 SIGN-ON USER-ID USER-PASSWORD.

*
 GET-DEMO.
*
 GET PROD.
*
 GET PROD FOR UPDATE.
*
 GET PROD USING PROD-TRAN.
*
 GET PROD AT PROD-MARK.
*
 GET PROD FOR UPDATE USING PROD-TRAN.
*
 GET PROD FOR UPDATE AT PROD-MARK.
*
 GET PROD NOT FOUND PERFORM PRODUCT-NOT-FOUND.
*
 GET PROD NOT FOUND PERFORM PRODUCT-NOT-FOUND
 ELSE PERFORM PRODUCT-ERROR.
*
 GET NEXT PROD.
*
 GET PRIOR PROD.
*
 GET SAME PROD.
*
 GET FIRST PROD.
*
 GET LAST PROD.
*
 INSERT-DEMO.
*
 INSERT PROD.
*
 INSERT PROD DUP KEY PERFORM DUP-PROD.
*
 INSERT NEXT PROD.
*
 INSERT PRIOR PROD.

Appendix A Sample RDM programs (VMS)

376 P25-0240-49

*
 INSERT LAST PROD.
*
 INSERT FIRST PROD.
*
 DELETE-DEMO.
*
 DELETE PROD.
*
 DELETE ALL PROD.
*
 UPDATE-DEMO.
*
 UPDATE PROD.
*
 MARK-DEMO.
*
 MARK PROD AT PROD-MARK.
*
 RESET-DEMO.
*
 RESET.
*
 RELEASE-DEMO.
*
 RELEASE.
*
 COMMIT-DEMO.
*
 COMMIT.
*
 SIGN-OFF-DEMO.
*
 SIGN-OFF.
*
 STOP RUN.
*
 PRODUCT-NOT-FOUND.
*
 EXIT.
*
 PRODUCT-ERROR.
*
 EXIT.
*
 DUP-PROD.
*
 EXIT.
*
 ERROR-ON-PROD.
*
 EXIT.

Sample COBOL RDM program

Programming Guide 377

Output from the preprocessor

The following is an expanded version of the program statements in the preceding
example.

IDENTIFICATION DIVISION.

PROGRAM-ID. LVDEMO.

*

**

* *

* THIS RELATIONAL DATA MANAGER PROGRAM DEMONSTRATES *

* MOST OF THE POSSIBLE RDML EXPANSIONS. *

* *

**

*

* ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

*

*

*01 INCLUDE ULT-CONTROL.

 01 ULT-CONTROL.

 10 ULT-OBJECT-NAME PIC X(30).

 10 ULT-OPERATION.

 20 ULT-ID PIC X(2).

 20 ULT-OPCODE PIC X.

 20 ULT-POSITION PIC X.

 20 ULT-MODE PIC X.

 20 ULT-KEYS PIC X.

 10 ULT-FSI PIC X.

 10 ULT-VSI PIC X.

 10 FILLER PIC X(2).

 10 ULT-MESSAGE PIC X(40).

 10 ULT-PASSWORD PIC X(8).

 10 ULT-OPTIONS PIC X(4).

 10 ULT-CONTEXT PIC X(4).

 10 ULT-LVCONTEXT PIC X(4).

*

Appendix A Sample RDM programs (VMS)

378 P25-0240-49

*01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).

 01 LUV-CUSTOMER.

 10 CUSTOMER.

 20 CUST-NO PIC X(006).

 20 NAME PIC X(020).

 20 CITY PIC X(015).

 10 ASI-CUSTOMER.

 20 ASI-CUST-NO PIC X.

 20 ASI-NAME PIC X.

 20 ASI-CITY PIC X.

*

*01 INCLUDE CUS-PRD (CUST-NO,PROD-NO).

 01 LUV-CUS-PRD.

 10 CUS-PRD.

 20 CUST-NO PIC X(006).

 20 PROD-NO PIC X(006).

 10 ASI-CUS-PRD.

 20 ASI-CUST-NO PIC X.

 20 ASI-PROD-NO PIC X.

*

*01 CONTACT INCLUDE PROD.

 01 LUV-CONTACT.

 10 CONTACT.

 20 PROD-NO PIC X(006).

 20 PROD-DESC PIC X(040).

 20 PROD-RENT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-MAINT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-PURCH PIC S9(07)V9(02) USAGE COMP.

 10 ASI-CONTACT.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

 20 ASI-PROD-RENT PIC X.

 20 ASI-PROD-MAINT PIC X.

 20 ASI-PROD-PURCH PIC X.

*

*

 01 GENERAL-VARIABLES.

*

 10 USER-ID PIC X(6) VALUE 'DEMO94'.

 10 USER-PASSWORD PIC X(8) VALUE 'DEM-PASS'.

 10 PROD-TRAN PIC X(4).

 10 PROD-MARK PIC X(4).

*

Sample COBOL RDM program

Programming Guide 379

*

*01 INCLUDE PROD.

 01 LUV-PROD.

 10 PROD.

 20 PROD-NO PIC X(006).

 20 PROD-DESC PIC X(040).

 20 PROD-RENT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-MAINT PIC S9(07)V9(02) USAGE COMP.

 20 PROD-PURCH PIC S9(07)V9(02) USAGE COMP.

 10 ASI-PROD.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

 20 ASI-PROD-RENT PIC X.

 20 ASI-PROD-MAINT PIC X.

 20 ASI-ROD-PURCH PIC X.

*

*

*

01 ULT-VER-DATA.

 10 ULT-DATE-STAMP.

 20 FILLER PIC X(8) VALUE '19830722'.

 20 FILLER PIC X(6) VALUE '123118'.

 10 ULT-CUSTOMER.

 20 FILLER PIC X(30) VALUE

 'CUST '.

 20 FILLER PIC X(08) VALUE 'CUST-NO,'.

 20 FILLER PIC X(05) VALUE 'NAME,'.

 20 FILLER PIC X(05) VALUE 'CITY,'.

 20 FILLER PIC X(4) VALUE 'END.'.

 10 ULT-CUS-PRD.

 20 FILLER PIC X(30) VALUE

 'CUS-PRD '.

 20 FILLER PIC X(08) VALUE 'CUST-NO,'.

 20 FILLER PIC X(08) VALUE 'PROD-NO,'.

 20 FILLER PIC X(4) VALUE 'END.'.

Appendix A Sample RDM programs (VMS)

380 P25-0240-49

 10 ULT-CONTACT.

 20 FILLER PIC X(30) VALUE

 'PROD '.

 20 FILLER PIC X(08) VALUE 'PROD-NO,'.

 20 FILLER PIC X(10) VALUE 'PROD-DESC,'.

 20 FILLER PIC X(10) VALUE 'PROD-RENT,'.

 20 FILLER PIC X(11) VALUE

 'PROD-MAINT,'.

 20 FILLER PIC X(11) VALUE

 'PROD-PURCH,'.

 20 FILLER PIC X(4) VALUE 'END.'.

 10 ULT-PROD.

 20 FILLER PIC X(30) VALUE

 'PROD '.

 20 FILLER PIC X(08) VALUE 'PROD-NO,'.

 20 FILLER PIC X(10) VALUE 'PROD-DESC,'.

 20 FILLER PIC X(10) VALUE 'PROD-RENT,'.

 20 FILLER PIC X(11) VALUE

 'PROD-MAINT,'.

 20 FILLER PIC X(11) VALUE

 'PROD-PURCH,'.

 20 FILLER PIC X(4) VALUE 'END.'.

 PROCEDURE DIVISION.

*

 SIGN-ON-DEMO.

*

* SIGN-ON USER-ID.

 MOVE 'LVS---' TO ULT-OPERATION

 MOVE USER-ID

 TO ULT-OBJECT-NAME

 MOVE SPACES TO ULT-PASSWORD

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL.

*

Sample COBOL RDM program

Programming Guide 381

* SIGN-ON USER-ID USER-PASSWORD.

 MOVE 'LVS---' TO ULT-OPERATION

 MOVE USER-ID

 TO ULT-OBJECT-NAME

 MOVE USER-PASSWORD

 TO ULT-PASSWORD

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL.

*

 GET-DEMO.

*

* GET PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVG-RO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET PROD FOR UPDATE.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVG-UO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

Appendix A Sample RDM programs (VMS)

382 P25-0240-49

* GET PROD USING PROD-TRAN.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE PROD-TRAN

 TO PROD-NO

 OF PROD

 MOVE 'LVG-R1' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET PROD AT PROD-MARK,

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE PROD-MARK

 TO ULT-CONTEXT

 MOVE 'LVGARO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET PROD FOR UPDATE USING PROD-TRAN.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE PROD-TRAN

 TO PROD-NO

 OF PROD

 MOVE 'LVG-U1' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

Sample COBOL RDM program

Programming Guide 383

* GET PROD FOR UPDATE AT PROD-MARK

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE PROD-MARK

 TO ULT-CONTEXT

 MOVE 'LVGAUO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET PROD NOT FOUND PERFORM PRODUCT-NOT-FOUND.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVG-RO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*' AND ULT-FSI NOT = 'N'

 PERFORM ERROR-ON-PROD

 ELSE IF ULT-FSI = 'N'

 PERFORM PRODUCT-NOT-FOUND.

* GET PROD NOT FOUND PERFORM PRODUCT-NOT-FOUND

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVG-RO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*' AND ULT-FSI NOT = 'N'

 PERFORM ERROR-ON-PROD

 ELSE IF ULT-FSI = 'N'

 PERFORM PRODUCT-NOT-FOUND

 ELSE PERFORM PRODUCT-ERROR.

*

Appendix A Sample RDM programs (VMS)

384 P25-0240-49

* GET NEXT PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVGNRO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET PRIOR PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVGPRO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET SAME PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVGSRO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* GET FIRST PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVGFRO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD. *

Sample COBOL RDM program

Programming Guide 385

* GET LAST PROD.

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 MOVE 'LVGLRO' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

 INSERT-DEMO.

*

* INSERT PROD.

 MOVE 'LVI---' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT_CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* INSERT PROD DUP KEY PERFORM DUP-PROD.

 MOVE 'LVI---' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*' AND ULT-FSI NOT = 'N'

 PERFORM ERROR-ON-PROD

 ELSE IF ULT-FSI = 'N'

 PERFORM DUP-PROD.

*

* INSERT NEXT PROD.

 MOVE 'LVIN--' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

Appendix A Sample RDM programs (VMS)

386 P25-0240-49

*

* INSERT PRIOR PROD.

 MOVE 'LIVP--' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD. * INSERT LAST PROD.

 MOVE 'LVIL--' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

* INSERT FIRST PROD.

 MOVE 'LVIF--' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

 DELETE-DEMO.

*

* DELETE PROD.

 MOVE 'LVD---' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

Sample COBOL RDM program

Programming Guide 387

* DELETE ALL PROD.

 MOVE 'LVD--*' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD.

*

 UPDATE-DEMO.

*

* UPDATE PROD.

 MOVE 'RDM---' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 ULT-DATE-STAMP,

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD. *

 MARK-DEMO.

*

* MARK PROD AT PROD-MARK.

 MOVE 'LVM---' TO ULT-OPERATION

 MOVE 'PROD ' TO ULT-OBJECT-NAME

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 LUV-PROD,

 LUV-PROD,

 ULT-DATE-STAMP,

 ULT-PROD

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-PROD

 MOVE ULT-CONTEXT TO

 PROD-MARK.

Appendix A Sample RDM programs (VMS)

388 P25-0240-49

*

 RESET-DEMO.

*

* RESET.

 MOVE 'LVA---' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL,

*

 RELEASE-DEMO.

*

* RELEASE.

 MOVE 'LVR---' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL.

*

 COMMIT-DEMO.

*

* COMMIT.

 MOVE 'LVC---' TO ULT-OPERATION

 CALL 'CSVIPLVS' USING ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL,

 ULT-CONTROL

 IF ULT-FSI NOT = '*'

 PERFORM ERROR-ON-ULT-CONTROL.

Sample COBOL RDM program

Programming Guide 389

*
 SIGN-OFF-DEMO. *
* SIGN-OFF.
 MOVE 'LVC---' TO ULT-OPERATION
 CALL 'CSVIPLVS' USING ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL
 IF ULT-FSI NOT = '*'
 PERFORM ERROR-ON-ULT-CONTROL.
 MOVE 'LVF---' TO ULT-OPERATION
 CALL 'CSVIPLVS' USING ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL
 IF ULT-FSI NOT = '*'
 PERFORM ERROR-ON-ULT-CONTROL.
*
 STOP RUN.
*
 PRODUCT-NOT-FOUND.
*
 EXIT.
*
 PRODUCT-ERROR.
*
 EXIT.
*
 DUP-PROD.
*
 EXIT.
*
 ERROR-ON-PROD.
*
 EXIT.
*
 ULT-PROGRAM-END.
 GO TO ULT-END-OF-PROGRAM.

 ERROR-ON-ULT-CONTROL.
 MOVE 'LVA---' TO ULT-OPERATION
 CALL 'CSVIPLVS' USING ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL,
 ULT-CONTROL
 STOP RUN.
 ULT-END-OF-PROGRAM.

&$

Appendix A Sample RDM programs (VMS)

390 P25-0240-49

Sample FORTRAN RDM program
Input to the preprocessor

 PROGRAM LVDEMO

*

* This FORTRAN Relational Data Manager program demonstrates

* many of the RDML expansions possible.

*

 INCLUDE ULT-CONTROL

 ON ERROR

 TYPE *,'RDM control call failed', ULT_FSI

 STOP

 END ERROR-HANDLER

*

 INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

*

 INCLUDE PARTS=V1(V1_PART=PART-NAME,FABRICATION-COST)

*

 INCLUDE V2

*

 CHARACTER*6 PART_KEY,COMP_KEY

 CHARACTER*4 PART_MARK

 CHARACTER*8 PASSWORD

*

* SIGN-ON examples.

*

 SIGN-ON 'JADOE'

 SIGN-ON 'JADOE',PASSWORD

Sample FORTRAN RDM program

Programming Guide 391

*

* GET examples.

*

 GET PART_COMP

 GET PART_COMP FOR UPDATE

 GET PART_COMP USING PART_KEY

 GET PART_COMP USING PART_KEY,COMP_KEY

 GET PART_COMP AT PART_MARK

 GET PART_COMP FOR UPDATE USING PART_KEY

 GET PART_COMP FOR UPDATE USING PART_KEY,COMP_KEY

 GET PART_COMP FOR UPDATE AT PART_MARK

*

 GET PART_COMP

 NOT FOUND

 GO TO 500

 END IF

* GET PART_COMP

 NOT FOUND

 GO TO 500

 ELSE

 TYPE *,'Record found successfully,'

 END IF

*

 GET NEXT PART_COMP

 GET PRIOR PART_COMP

 GET SAME PART_COMP

 GET FIRST PART_COMP

 GET LAST PART_COMP

Appendix A Sample RDM programs (VMS)

392 P25-0240-49

*

* INSERT examples.

*

 INSERT PART_COMP

*

 INSERT PART_COMP

 DUP KEY

 GO TO 500

 END IF

*

 INSERT PART_COMP

 DUP KEY

 GO TO 500

 ELSE

 TYPE *,'Record inserted successfully,'

 END IF

*

 INSERT NEXT PART_COMP

 INSERT PRIOR PART_COMP

 INSERT FIRST PART_COMP

 INSERT LAST PART_COMP

*

* DELETE example.

*

 DELETE PART_COMP

 DELETE ALL PART_COMP

*

* UPDATE example.

*

 UPDATE PART_COMP

*

* MARK example.

*

 MARK PART_COMP AT PART_MARK

*

* RESET example.

*

 RESET

Sample FORTRAN RDM program

Programming Guide 393

*

* RELEASE example.

*

 RELEASE

*

* COMMIT example.

*

 COMMIT

*

* SIGN-OFF example.

*

 SIGN-OFF

*

* Label to which control is passed on record not found.

*

500 STOP

 END

Appendix A Sample RDM programs (VMS)

394 P25-0240-49

Output from the preprocessor

The following is an expanded version of the program statements in the preceding
example.

 PROGRAM LVDEMO

*

* The purpose of this FORTRAN Relational Data Manager program is to

* demonstrate many of the RDML expansions possible.

*

C INCLUDE ULT-CONTROL

 CHARACTER ULT_OBJECT_NAME*30,ULT_OPERATION*6,ULT_FSI*1,ULT_VSI*1,

 +ULT_FILLER*2,ULT_MESSAGE*40,ULT_PASSWORD*8,ULT_OPTIONS*4,

 +ULT_CONTEXT*4,ULT_LVCONTEXT*4

 PARAMETER(ULT_CONTROL_LEN=100)

 CHARACTER*(ULT_CONTROL_LEN) ULT_CONTROL

 EQUIVALENCE (ULT_CONTROL(1:30),ULT_OBJECT_NAME(1:30)),

 +(ULT_CONTROL(31:36),ULT_OPERATION(1:6)),(ULT_CONTROL(37:37),

 +ULT_FSI(1:1)),(ULT_CONTROL(38:38),ULT_VSI(1:1)),

 +(ULT_CONTROL(39:40),ULT_FILLER(1:2)),(ULT_CONTROL(41:80),

 +ULT_MESSAGE(1:40)),(ULT_CONTROL(81:88),ULT_PASSWORD(1:8)),

 +(ULT_CONTROL(89:92),ULT_OPTIONS(1:4)),(ULT_CONTROL(93:96),

 +ULT_CONTEXT(1:4)),(ULT_CONTROL(97:100),ULT_LVCONTEXT(1:4))

 CHARACTER*14 ULT_DATE_STAMP

 DATA ULT_DATE_STAMP/'19831114143849'/

C ON ERROR

C TYPE *,'RDM control call failed',ULT_FSI

C STOP

C END ERROR-HANDLER

*

Sample FORTRAN RDM program

Programming Guide 395

C INCLUDE PART-COMP=V2(PART=PART-NAME,COMP=COMPONENT-NAME)

*

 CHARACTER*6 PART

 CHARACTER*6 COMP

 CHARACTER*1 ASI_PART,ASI_COMP

 EQUIVALENCE (PART,PART_COMP(1:6))

 EQUIVALENCE (COMP,PART_COMP(7:12))

 EQUIVALENCE (ASI_PART,PART_COMP(13:13))

 EQUIVALENCE (ASI_COMP,PART_COMP(14:14))

 INTEGER*4 PART_COMP_LEN

 PARAMETER(PART_COMP_LEN=14)

 CHARACTER*(PART_COMP_LEN)PART_COMP

 CHARACTER ULT$PART_COMP*30,ULT$PART*17,ULT$COMP*22,ULT_END_VIEW1*4

 DATA ULT$PART_COMP/'V2 '/ULT$PART

 +/'006C00PART-NAME,'/ULT$COMP/'006C00COMPONENT-NAME,'/ULT_END_VIEW

 +1/'END.'/

 CHARACTER*73 ULT$1

 EQUIVALENCE (ULT$1,ULT$PART_COMP),(ULT$1(31:47),ULT$PART),(ULT$1

 +48:69),ULT$COMP),(ULT$1(70:73),ULT_END_VIEW1)

* C INCLUDE PARTS=V1(V1_PART=PART-NAME,FABRICATION-COST)

 CHARACTER*6 V1_PART

 INTEGER*4 FABRICATION_COST

 CHARACTER*1 ASI_V1_PART,ASI_FABRICATION_COST

 EQUIVALENCE (V1_PART,PARTS(1:6))

 BYTE ULT_FABRICATION_COST(4)

 EQUIVALENCE (ULB_FABRICATION_COST,FABRICATION_COST),(ULB

 +FABRICATION_COST,PARTS(7:10))

 EQUIVALENCE (ASI_V1PART,PARTS(11:11))

 EQUIVALENCE (ASI_FABRICATION_COST,PARTS(12:12))

 INTEGER*4 PARTS_LEN

 PARAMETER(PARTS_LEN=12)

 CHARACTER*(PARTS_LEN)PARTS

 CHARACTER ULT$PARTS*30,ULT$V1_PART*16,ULT$FABRICATION_COST*24,

 +ULT_END_VIEW2*4

 DATA ULT$PARTS/'V1 '/ULT$V1_PART

 +/'006C00PART-NAME,'/ULT$FABRICATION_COST

 +/'004B00FABRICATION-COST,'/ULT_END_VIEW2/'END.'/

 CHARACTER*75 ULT$2

 EQUIVALENCE (ULT$2,ULT$PARTS),(ULT$2(31:47),ULT$V1_PART),(ULT$2

 +(48:71),ULT$FABRICATION+COST),(ULT$2(72:75),ULT_END_VIEW2)

*

Appendix A Sample RDM programs (VMS)

396 P25-0240-49

C INCLUDE V2

*

 CHARACTER*6 PART_NAME

 CHARACTER*6 COMPONENT_NAME

 INTEGER*4 NO_OF_COMPONENTS

 INTEGER*4 COMPONENT_FABRICATION_COST

 INTEGER*4 COMPONENT_STOCK

 CHARACTER*1 ASI_PART_NAME,ASI_COMPONENT_NAME,ASI_NO_OF_COMPONENTS,

 +ASI_COMPONENT_FABRICATION_COST,ASI_COMPONENT_STOCK

 EQUIVALENCE (PART_NAME,V2(1:6))

 EQUIVALENCE (COMPONENT_NAME,V2(7:12))

 BYTE ULB_NO_OF_COMPONENTS(4)

 EQUIVALENCE (ULB_NO_OF_COMPONENTS,NO_OF_COMPONENTS),(ULB

 +NO_OF_COMPONENTS,V2(13:16))

 BYTE ULB_COMPONENT_FABRICATION_COST(4)

 EQUIVALENCE (ULB_COMPONENT_FABRICATION_COST,

 +COMPONENT_FABRICATION_COST),(ULB_COMPONENT_FABRICATION_COST,V2

 +(17:20))

 BYTE ULT_COMPONENT_STOCK(4)

 EQUIVALENCE (ULB_COMPONENT_STOCK,COMPONENT_STOCK),(ULB

 +COMPONENT_STOCK,V2(21:24))

 EQUIVALENCE (ASI_PART_NAME,V2(25:25))

 EQUIVALENCE (ASI_COMPONENT_NAME,V2(26:26))

 EQUIVALENCE (ASI_NO_OF_COMPONENTS,V2(27:27))

 EQUIVALENCE (ASI_COMPONENT_FABRICATION_COST,V2(28:28))

 EQUIVALENCE (ASI_COMPONENT_STOCK,V2(29:29))

 INTEGER*4 V2_LEN

 PARAMETER(V2_LEN=29)

 CHARACTER*(V2_LEN)V2

 CHARACTER ULT$V2*30,ULT$PART_NAME*17,ULT$COMPONENT_NAME*22,ULT$

 +NO_OF_COMPONENTS*24,ULT$COMPONENT_FABRICATION_COST*34,ULT$

 +COMPONENT_STOCK*23,ULT_END_VIEW3*4

 DATA ULT$V2/'V2 '/ULT$PART_NAME

 +/'006C00PART-NAME,'/ULT$COMPONENT_NAME/'006C00COMPONENT-NAME,'/

 +ULT$NO_OF_COMPONENTS/'004B00NO-OF-COMPONENTS,'/ULT$

 +COMPONENT_FABRICATION_COST/'004B00COMPONENT-FABRICATION-COST,'/

 +ULT$COMPONENT_STOCK/'004B00COMPONENT-STOCK,'/ULT_END_VIEW3/'END.'/

 CHARACTER*154 ULT$3

 EQUIVALENCE (ULT$3,ULT$V2),(ULT$3(31:47),ULT$PART_NAME),(ULT$3(48:

 +69),ULT$COMPONENT_NAME),(ULT$3(70:93),ULT$NO_OF_COMPONENTS),(ULT$3

 +(94:127),(ULT$COMPONENT_FABRICATION_COST),(ULT$3(128:150),ULT$

 +COMPONENT_STOCK),(ULT$3(151:154),ULT_END_VIEW3)

Sample FORTRAN RDM program

Programming Guide 397

*

* SIGN-ON examples.

*

C SIGN-ON 'JADOE'

 ULT_OBJECT_NAME='JADOE'

 ULT_PASSWORD=' '

 ULT_OPERATION='LVS---'

 CALL CSVIPLVS(%REF*ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

C SIGN-ON 'JADOE',PASSWORD

*

* GET examples.

*

 ULT_OBJECT_NAME='JADOE'

 ULT_PASSWORD=PASSWORD

 ULT_OPERATION='LVS---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI,NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

C GET PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVG-RO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PART_COMP FOR UPDATE

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVG-UO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

Appendix A Sample RDM programs (VMS)

398 P25-0240-49

C GET PART_COMP USING PART_KEY

 ULT_OBJECT_NAME='PART_COMP'

 PART=PART_KEY

 ULT_OPERATION='LVG-R1'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

 ULT PART_COMP USING PART_KEY,COMP_KEY

 ULT_OBJECT_NAME='PART_COMP'

 PART=PART_KEY

 COMP=COMP_KEY

 ULT_OPERATION='LVG-R2'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PART_COMP AT PART_MARK

 ULT_OBJECT_NAME='PART_COMP'

 ULT_CONTEXT=PART_MARK

 ULT_OPERATION='LVGAR0'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PART_COMP FOR UPDATE USING PART_KEY

 ULT_OBJECT_NAME='PART_COMP'

 PART=PART_KEY

 ULT_OPERATION='LUG-U1'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

Sample FORTRAN RDM program

Programming Guide 399

C GET PART_COMP FOR UPDATE USING PART_KEY,COMP_KEY

 ULT_OBJECT_NAME='PART_COMP'

 PART=PART_KEY

 COMP=COMP_KEY

 ULT_OPERATION='LVG-U2'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PART_COMP FOR UPDATE AT PART_MARK

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_CONTEXT=PART_MARK

 ULT_OPERATION='LVGAU0'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVG-R0'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

C NOT FOUND

 IF ((ULT_FSI.NE.'*') .AND. (ULT_FSI.NE.'N')) THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE IF (ULT_FSI.EQ.'N') THEN

 GO TO 500

 END IF

*

C GET PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVG-R0'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

Appendix A Sample RDM programs (VMS)

400 P25-0240-49

C NOT FOUND

 IF ((ULT_FSI.NE.'*') .AND. (ULT_FSI.NE.'N')) THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE IF (ULT_FSI.EQ.'N') THEN

 GO TO 500

 ELSE

 TYPE *,'Record found successfully.'

 END IF

*

C GET NEXT PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVGNR0'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET PRIOR PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVGPRO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET SAME PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVGSRO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

Sample FORTRAN RDM program

Programming Guide 401

C GET FIRST PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVGFRO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C GET LAST PART_COMP

*

* INSERT examples.

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVGLRO'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C INSERT PART_COMP

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='VLI---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C INSERT PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVI---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COM),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

Appendix A Sample RDM programs (VMS)

402 P25-0240-49

C DUP KEY

 IF ((ULT_FSI.NE.'*') .AND. (ULT_FSI.NE.'N')) THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE IF (ULT_FSI.EQ.'N') THEN

 GO TO 500

 END IF

*

C INSERT PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVI---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

C DUP KEY

 IF ((ULT_FSI.NE.'*') .AND. (ULT_FSI.NE.'N')) THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE IF (ULT_FSI.EQ.'N') THEN

 GO TO 500

 ELSE

 TYPE *,'Record inserted successfully.'

 END IF

*

C INSERT NEXT PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVIN--'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C INSERT PRIOR PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVIP--'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

Sample FORTRAN RDM program

Programming Guide 403

C INSERT FIRST PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVIF---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C INSERT LAST PART_COMP

*

* DELETE example.

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVIL--'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C DELETE PART_COMP

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVD---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C DELETE ALL PART_COMP

*

* UPDATE example.

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVD--*'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

Appendix A Sample RDM programs (VMS)

404 P25-0240-49

C UPDATE PART_COMP

*

* MARK example.

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_OPERATION='LVU---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 END IF

C MARK PART_COMP AT PART_MARK

*

* RESET example.

*

 ULT_OBJECT_NAME='PART_COMP'

 ULT_CONTEXT=PART_MARK

 ULT_OPERATION='LVM---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(PART_COMP),

 +%REF(ULT_DATE_STAMP),%REF(ULT$PART_COMP))

 IF (ULT_FSI.NE.'*') THEN

 CALL CSVDERROR(ULT_CONTROL)

 ELSE

 PART_MARK=ULT_CONTEXT

 END IF

C RESET

*

* RELEASE example.

*

 ULT_OPERATION='LVA---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

C RELEASE

*

Sample FORTRAN RDM program

Programming Guide 405

* COMMIT example.

*

 ULT_OPERATION='LVR---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

C COMMIT

*

* SIGN-OFF example.

*

 ULT_OPERATION='LVC---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

C SIGN-OFF

*

* label to which control is passed on record not found.

*

 ULT_OPERATION='LVC---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),,%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

 ULT_OPERATION='LVF---'

 CALL CSVIPLVS(%REF(ULT_CONTROL),%REF(ULT_CONTROL),

 +%REF(ULT_CONTROL),%REF(ULT_CONTROL))

 IF (ULT_FSI.NE.'*') THEN

 TYPE *,'RDM control call failed',ULT_FSI

 STOP

 END IF

500 STOP

 END

%$

Appendix A Sample RDM programs (VMS)

406 P25-0240-49

Sample BASIC RDM program
Input to the preprocessor

100 RDM PROGRAM YYY

 RDM INCLUDE ULT-CONTROL

 RDM ON ERROR

 GOTO 999

 END ERROR-HANDLER

 RDM INCLUDE TEST1

 RDM INCLUDE TEST6G

 RDM ON ERROR

 PRINT ULT_CONTROL::ULT_FSI / GOTO 999

 END ERROR-HANDLER

 RDM INCLUDE TEST6F

 RDM INCLUDE TEST6E

 RDM INCLUDE TEST6D

 RDM INCLUDE TEST7

 RDM INCLUDE FRED=TEST6D(F1=CUST-ORDER-NO,F2=CUST-ORDER-DATE)

200 DO_SIGN_ONS: RDM SIGN-ON 'JADOE'

 RDM SIGN-OFF

 RDM SIGN-ON 'JADOE','JBDOE'

300 DO_GETS: RDM GET TEST1

 RDM GET FIRST TEST1

 RDM GET NEXT TEST1

 RDM GET LAST TEST1

 RDM GET PRIOR TEST1

 RDM GET TEST1 AT TEST1_MARK

!The comments on the next lines test the operation of commenting out

400 DO_GET_USINGS: RDM GET TEST1 USING "PART2" !"!!"! + CHR$(52)

 RDM GET FIRST TEST1 USING "!" + CHR$(52)

 RDM GET NEXT TEST1 USING "PART2" + CHR$(52)

 RDM GET LAST TEST1 USING "PART2" + CHR$(52)

 RDM GET PRIOR TEST1 USING "PART2" + CHR$(52)

for i%=1% to 10% !a comment on a normal program line

 print i% !more comments

Sample BASIC RDM program

Programming Guide 407

500 DO_GET_NOT_FOUND: RDM GET TEST1 USING 'PART2' + CHR$(52)

 NOT FOUND / GOTO 999 / END IF

 RDM GET FIRST TEST1 USING "PART2" + CHR$(52)

 NOT FOUND / GOTO 999 / END IF

 RDM GET NEXT TEST1 USING "PART2" + CHR$(52)

 NOT FOUND / GOTO 999 / END IF(ep)

 RDM GET LAST TEST1 USING "PART2" + CHR$(52)

 NOT FOUND / GOTO 999 / END IF

 RDM GET PRIOR TEST1 USING "PART2" + CHR$(52)

 NOT FOUND / GOTO 999 / END IF

 RDM GET TEST1 AT TEST1 MARK$NOT FOUND GOTO 999E END IF

600 DO_INSERTS: RDM INSERT TEST6G

 RDM INSERT FIRST TEST6G

 RDM INSERT NEXT TEST6G

 RDM INSERT LAST TEST6G

 RDM INSERT PRIOR TEST6G

700 DO_INSERT_DUPS: RDM INSERT TEST6G / DUP KEY / GOTO 999 / END IF

 RDM INSERT FIRST TEST6G / DUP KEY / GOTO 999 / END IF

 RDM INSERT NEXT TEST6G / DUP KEY / GOTO 999 / END IF

 RDM INSERT LAST TEST6G / DUP KEY / GOTO 999 / END IF

 RDM INSERT PRIOR TEST6G / DUP KEY / GOTO 999 / END IF

800 DO_UPDATE RDM UPDATE TEST 6D

900 DO_DELETES: RDM DELETE TEST6E

 RDM DELETE ALL TEST 6F

950 DO_MISCELLANEOUS: RDM RELEASE

 RDM MARK TEST1 AT TEST1_MARK

 RDM COMMIT

 RDM RESET

999 END

Appendix A Sample RDM programs (VMS)

408 P25-0240-49

Output from the preprocessor

The following is an expanded version of the program statements in the preceding
example.

100

!100 RDM PROGRAM YYY

 RDM INCLUDE ULT-CONTROL

RECORD ULT_CONTROL_REC

STRING ULT_OBJECT_NAME = 30, ULT_OPERATION = 6,

ULT_FSI = 1,ULT_VSI = 1, ULT_FILLER = 2, ULT_MESSAGE = 40,

ULT_PASSWORD = 8, ULT_OPTIONS = 4, ULT_CONTEXT = 4, ULT_LVCONTEXT = 4

END RECORD

DECLARE ULT_CONTROL_REC_CONTROL ULT_CONTROL

EXTERNAL SUB CSVIPLVS, CSVBERROR

DECLARE STRING CONSTANT ULT_DATE_STAMP = '19840830161953'

! RDM ON ERROR

! GOTO 999

! END ERROR-HANDLER

! RDM INCLUDE TEST1

RECORD TEST1_REC

STRING PART_NAME=6,DECIMAL(4,4) PART_LABOUR_COST,STRING

PART_LAST_UPDATE=6

STRING ASI_PART_NAME = 1,ASI_PART_LABOUR_COST = 1,

ASI_PART_LAST_UPDATE = 1

END RECORD

DECLARE TEST1_REC TEST1

DECLARE STRING CONSTANT TEST1_ULT ='TEST1 '+

'006C00PART_NAME,'+'004P04PART-LABOUR-COST,'+

'006C00PART-LAST-UPDATE,'+'END.'

! RDM INCLUDE TEST6G RECORD TEST6G_REC

STRING CUST=6,STRING ITEM_CORD=6,STRING COMPLETION_DATE=7,STRING

INVOICE_DATE=7,STRING INVOICE_NO_2=6,STRING ITEM_DATE=7,STRING

ITEM_PART=6,STRING DESPATCH_NO=6,STRING INVOICE_NO=6

STRING ASI_CUST = 1,ASI_ITEM_CORD = 1,ASI_COMPLETION_DATE = 1,

ASI_INVOICE_DATE = 1,ASI_INVOICE_NO_2 = 1,

ASI_ITEM_DATE = 1,ASI_ITEM_PART = 1,ASI_DESPATCH_NO = 1,

ASI_INVOICE_NO = 1

END RECORD

Sample BASIC RDM program

Programming Guide 409

DECLARE TEST6G_REC TEST6G

DECLARE STRING CONSTANT TEST6G_ULT ='TEST6G '+

'006C00CUST,'+'006C00ITEM-CORD,'+'007C00COMPLETION-DATE,'+

'007C00INVOICE-DATE,'+'006C00INVOICE-NO-2,'+'007C00ITEM-DATE,'+

'006C00ITEM-PART,'+'006C00DESPATCH-NO,'+'006C00INVOICE-NO,'+'END.'

! RDM ON ERROR

! PRINT ULT_CONTROL::ULT_FSI

! GOTO 999

! END ERROR-HANDLER

! RDM INCLUDE TEST6F

RECORD TEST6F_REC

STRING CUST_ORDER_NO=6,STRING ITEM_DATE=7,STRING ITEM_PART=6,STRING

DESPATCH_NO=6,STRING INVOICE_NO=6,STRING ITEM_CUST=6,STRING

COMPLETION_DATE=7

STRING ASI_CUST_ORDER_NO = 1,ASI_ITEM_DATE = 1,

ASI_ITEM_PART = 1,ASI_DESPATCH_NO = 1,ASI_INVOICE_NO = 1,

ASI_ITEM_CUST = 1,ASI_COMPLETION_DATE = 1

END RECORD

DECLARE TEST6F_REC TEST6F

DECLARE STRING CONSTANT TEST6F_ULT ='TEST6F '+

'006C00CUST-ORDER-NO,'+'007C00ITEM-DATE,'+''006C00ITEM-PART,'+

'006C00DESPATCH-NO,'+'006C00INVOICE-NO,'+'006C00ITEM-CUST,'+

'007C00COMPLETION-DATE,'+'END.'

! RDM INCLUDE TEST 6E

RECORD TEST6E_REC

STRING CUST_ORDER_NO=6,STRING CUST_ORDER_DATE=9,STRING ITEM_CUST=6,

STRING COMPLETION_DATE=7,STRING ITEM_DATE=7,STRING ITEM_PART=6,STRING

DESPATCH_NO=6,STRING INVOICE_NO=6

STRING ASI_CUST_ORDER_NO = 1,ASI_CUST_ORDER_DATE = 1,

ASI_ITEM_CUST = 1,ASI_COMPLETION_DATE = 1,

ASI_ITEM_DATE = 1,ASI_ITEM_PART = 1,ASI_DESPATCH_NO = 1,

ASI_INVOICE_NO = 1

END RECORD

DECLARE TEST6E_REC TEST6E

DECLARE STRING CONSTANT TEST6E_ULT ='TEST6E '+

006C00CUST-ORDER-NO,'+'009C00CUST-ORDER-DATE,'+'006C00ITEM-CUST,'+

007C00COMPLETION-DATE,'+'007C00ITEM-DATE,'+'006C00ITEM-PART,'+

006C00DESPATCH-NO,'+'006C00INVOICE-NO,'+'END.'

! RDM INCLUDE TEST6D

Appendix A Sample RDM programs (VMS)

410 P25-0240-49

RECORD TEST6D_REC

STRING CUST_ORDER_NO=6,STRING CUST_ORDER_DATE=9,STRING ITEM_CUST=6,

STRING COMPLETION_DATE=7,STRING DESPATCH_DATE=7,STRING DESPATCH_NO_1=6,

DECIMAL(4,0) QUANTITY_DESPATCHED

STRING ASI_CUST_ORDER_NO = 1,ASI_CUST_ORDER_DATE = 1,

STRING ASI_CUST_ORDER_NO = 1,ASI_CUST_ORDER_DATE = 1,

ASI_ITEM_CUST = 1,ASI_COMPLETION_DATE = 1,

ASI_QUANTITY_DESPATCHED = 1

END RECORD

DECLARE TEST6D_REC TEST6D

DECLARE STRING CONSTANT TEST6D_ULT ='TEST6D '+

'006C00CUST-ORDER-NO,'+'009C00CUST-ORDER-DATE,'+'006C00ITEM-CUST,'+

'007C00COMPLETION-DATE,'+'007C00DESPATCH-DATE,'+

'006C00DESPATCH-NO-1,'+'004P00QUANTITY_DESPATCHED,'+'END.'

! RDM INCLUDE TEST7

RECORD TEST7_REC

STRING STOCK_ISSUE_NUMBER=5,STRING STCK_PART=6,STRING TRANSACTION_DATE=

7,STRING AUTHORISATION=11

STRING ASI_STOCK_ISSUE_NUMBER = 1,ASI_STCK_PART = 1,

ASI_TRANSACTION_DATE = 1,ASI_AUTHORISATION = 1

END RECORD

DECLARE TEST7_REC TEST7

DECLARE STRING CONSTANT TEST7ULT ='TEST7 '+

005C00STOCK-ISSUE-NUMBER,'+'006C00STCK-PART,'+

007C00TRANSACTION-DATE,'+'011C00AUTHORISATION,'+'END.'

! RDM INCLUDE FRED=TEST6D(F1=CUST-ORDER-NO,F2=CUST-ORDER-DATE)

RECORD FRED_REC

STRING F1=6,STRING F2=9

STRING ASI_F1 = 1,ASI_F2 = 1

END RECORD

DECLARE FRED_REC FRED

DECLARE STRING CONSTANT FRED_ULT ='TEST6D '+

'006C00CUST-ORDER-NO,'+'009C00CUST-ORDER-DATE,'+'END.'

200 DO_SIGN_ONS:

!200 DO_SIGN_ONS: RDM SIGN-ON 'JADOE'

ULT_CONTROL::ULT_OBJECT_NAME='JADOE'

ULT_CONTROL::ULT_PASSWORD=' '

ULT_CONTROL::ULT_OPERATION='LVS---'

Sample BASIC RDM program

Programming Guide 411

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF

! RDM SIGN-OFF

ULT_CONTROL::ULT_OPERATION='LVC---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF, ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF ULT_CONTROL::ULT_OPERATION='LVF---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF

! RDM SIGN-ON 'JADOE','JBDOE'

ULT_CONTROL::ULT_OBJECT_NAME='JADOE'

ULT_CONTROL::ULT_PASSWORD='JBDOE'

ULT_CONTROL::ULT_OPERATION='LVS---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF

 300 DO_GETS:

!300 DO_GETS: RDM GET TEST1

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_OPERATION='LVG-RO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

Appendix A Sample RDM programs (VMS)

412 P25-0240-49

! RDM GET FIRST TEST1

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_OPERATION='LVGFRO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET NEXT TEST1

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_OPERATION='LVGNRO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET LAST TEST1

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_OPERATION='LVGLRO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET PRIOR TEST1

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_OPERATION='LVGPRO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET TEST1 AT TEST1_MARK

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_CONTEXT=TEST1_MARK

ULT_CONTROL::ULT_OPERATION='LVGARO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

Sample BASIC RDM program

Programming Guide 413

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

!The comments on the next lines test the operation of commenting out

 400 DO_GET_USINGS:

!400 DO_GET_USINGS: RDM GET TEST1 USING 'PART2' !!'!!!!'!! + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVG-R1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET FIRST TEST1 USING '!!' + CHR$(52) !!a comment

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='!'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGFR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF, TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

END IF

! RDM GET NEXT TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGNR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM GET LAST TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGLR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

Appendix A Sample RDM programs (VMS)

414 P25-0240-49

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

!RDM GET PRIOR TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGPR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

 for i%=1% to 10% !a comment on a normal program line

 print i% !more comments

 next i%

 500 DO_GET_NOT_FOUND:

!500 DO_GET_NOT_FOUND: RDM GET TEST1 USING'PART2' +CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVG-R1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM GET FIRST TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGFR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

Sample BASIC RDM program

Programming Guide 415

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM GET NEXT TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGNR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM GET LAST TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGLR1'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM GET PRIOR TEST1 USING 'PART2' + CHR$(52)

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

TEST1::PART_NAME='PART2'+CHR$(52)

ULT_CONTROL::ULT_OPERATION='LVGPR1'

Appendix A Sample RDM programs (VMS)

416 P25-0240-49

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM GET TEST1 AT TEST1_MARK

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_CONTEXT=TEST1_MARK

ULT_CONTROL::ULT_OPERATION='LVGARO'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

! NOT FOUND

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

 600 DO_INSERTS:

!600 DO_INSERTS: RDM INSERT TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVI-U-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

! RDM INSERT FIRST TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVIFU-'

Sample BASIC RDM program

Programming Guide 417

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

! RDM INSERT NEXT TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVINU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

! RDM INSERT LAST TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVILU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

! RDM INSERT PRIOR TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVIPU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

Appendix A Sample RDM programs (VMS)

418 P25-0240-49

 700 DO_INSERT_DUPS:

!700 DO_INSERT_DUPS: RDM INSERT TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVI-U-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

! DUP KEY

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM INSERT FIRST TEST6G

ULT_CONTROL::ULT_OBJECT NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVIFU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

! DUP KEY

Sample BASIC RDM program

Programming Guide 419

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM INSERT NEXT TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVINU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

! DUP KEY

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM INSERT LAST TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVILU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

! DUP KEY

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

! RDM INSERT PRIOR TEST6G

ULT_CONTROL::ULT_OBJECT_NAME='TEST6G'

ULT_CONTROL::ULT_OPERATION='LVIPU-'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6G BY REF,

ULT_DATE_STAMP BY REF,TEST6G_ULT BY REF)

! DUP KEY

Appendix A Sample RDM programs (VMS)

420 P25-0240-49

IF ((ULT_CONTROL::ULT_FSI <> '*') AND (ULT_CONTROL::ULT_FSI <> 'N')) THEN

 PRINT ULT_CONTROL::ULT_FSI

 GOTO 999

END IF

IF (ULT_CONTROL::ULT_FSI='N') THEN

GOTO 999

END IF

800 DO UPDATE:

!800 DO_UPDATE: RDM UPDATE TEST6D

ULT_CONTROL::ULT_OBJECT_NAME='TEST6D'

ULT_CONTROL::ULT_OPERATION='LVU---'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6D BY REF,

ULT_DATE_STAMP BY REF,TEST6D_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

 900 DO_DELETES:

!900 DO_DELETES: RDM DELETE TEST6E

ULT_CONTROL::ULT_OBJECT_NAME='TEST6E'

ULT_CONTROL::ULT_OPERATION='LVD---'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6E BY REF,

ULT_DATE_STAMP BY REF,TEST6E_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

! RDM DELETE ALL TEST 6F

ULT_CONTROL::ULT_OBJECT_NAME='TEST6F'

ULT_CONTROL::ULT_OPERATION='LVD--*'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST6F BY REF,

ULT_DATE_STAMP BY REF,TEST6F_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

END IF

 950 DO_MISCELLANEOUS

!950 DO_MISCELLANEOUS: RDM RELEASE

ULT_CONTROL::ULT_OPERATION='LVR---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

Sample BASIC RDM program

Programming Guide 421

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF

! RDM MARK TEST1 AT TEST1_MARK

ULT_CONTROL::ULT_OBJECT_NAME='TEST1'

ULT_CONTROL::ULT_CONTEXT=TEST1_MARK

ULT_CONTROL::ULT_OPERATION='LVM---'

CALL CSVIPLVS(ULT_CONTROL BY REF,TEST1 BY REF,

ULT_DATE_STAMP BY REF,TEST1_ULT BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

CALL CSVBERROR(ULT_CONTROL)

ELSE

TEST1_MARK_ULT_CONTROL::ULT_CONTEXT

END IF

! RDM COMMIT

ULT_CONTROL::ULT_OPERATION='LVC---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF,ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF ! RDM RESET

ULT_CONTROL::ULT_OPERATION-'LVA---'

CALL CSVIPLVS(ULT_CONTROL BY REF,ULT_CONTROL BY REF, ULT_CONTROL BY REF,

ULT_CONTROL BY REF)

IF (ULT_CONTROL::ULT_FSI <> '*') THEN

 GOTO 999

END IF

 999

END

Appendix A Sample RDM programs (VMS)

422 P25-0240-49

Index

A

access modes, permitted uses of
during SINON 336

access-control parameter
(PDML) 232

adding primary records,
understanding how 215.
See also ADD-M

adding related records,
understanding how 219.
See also ADDVA, ADDVB,
and ADDVC

ADD-M, PDML command
successful use of 361
using to add a record to a

primary data set 238
ADDVA, PDML command

efficiency of use 366
understanding how to use 219,

222
using to add a related record

242
ADDVB, PDML command

efficiency of use 366
understanding how to use 219,

221
using to add a related record

249
ADDVC, PDML command

efficiency of use 366
understanding how to use 219
using to add a related record

256
ADDVR, PDML command 263
ALL

using with DELETE
DBAID 53

using with DELETE (BASIC,
FORTRAN, and COBOL)
169

application program objects
modules, linking 348

area-length parameter, PDML
232

area-length, calculating size of
275

ASI. See Attribute Status
Indicator (ASI)

assigning values to keys 32
AT, using with

GET
BASIC 185
COBOL 180
DBAID 64
FORTRAN 185

MARK 132
attribute list, displaying in DBAID

98
Attribute Status Indicator (ASI)

definition of 117
example of generation

BASIC 119
COBOL 118
FORTRAN 118

values 119, 120

B

BASIC
data item descriptions 107
error handlers 144
listing of CSVBERROR 146
writing the program naming

statement 108
BASIC program

executing 149
linking 151
logic statements

controlling database recovery
140

handling error conditions 144
modifying rows 135, 136, 138
retrieving rows 123
signing off of RDM 122
signing on to RDM 122

running the RDM preprocessor
for 149

sample RDM program 407, 409

 Programming Guide 423

BASIC RDML statements
COMMIT 167
DELETE 169
FORGET 173
INCLUDE 153
INCLUDE ULT-CONTROL 164
INSERT 190
MARK 195
RELEASE 198
RESET 200
SIGN-OFF 202
SIGN-ON 205
UPDATE 210
using hyphens and

underscores in 104
BEGN, for reading primary

records 216

C

C program, example PDM
program 374

CALL statements
conventions for using 356
list of parameters

BASIC 355
COBOL 354
FORTRAN 355

closing views in DBAID 85
CNTRL, using PDML command

269
COBOL

data item descriptions 106
error conditions

handling 142
preventing loops in 143
using NOT FOUND with 142

writing the environment division
109

COBOL procedure division
statements

controlling database recovery
140

handling error conditions 141
modifying rows 135, 136, 138
retrieving rows 123
signing off of RDM 122
signing on to RDM 122

COBOL programs
example PDM program 371
executing 149
linking 151
running the RDM preprocessor

for 149
sample RDM program 375

COBOL RDM statements,
INCLUDE 110

COBOL RDML statements
COMMIT 167
DELETE 169
FORGET 173
GET 176
INCLUDE 153
INCLUDE ULT-CONTROL 163
INSERT 190
MARK 195
RDML statement format 103
RELEASE 198
RESET 200
SIGN-OFF 202
SIGN-ON 205
UPDATE 210
using dashes and underscores

in 103
code-directed reading 370
column descriptions, displaying

57
column descriptors, displaying 46
column number, specifying with

BY-LEVEL
DBAID 44

column-name, specifying with
DBAID

COLUMN-DEFN 46
COLUMN-TEXT 51
FIELD-DEFN 57
FIELD-TEXT 60

COMIT PDML command, using
273

command parameter, PDML 232
commands

DBAID. See DBAID commands
PDML. See PDML commands
RDML. See RDML statements
warning about coding RDML

and PDML commands in
one program 347

Index

424 P25-0240-49

comments
displaying for column in a view

51, 59
how they are shown by the

RDM preprocessor 110
COMMIT, RDML statement

issuing in DBAID 93
using to control database

recovery 140
using to modify rows 134

compiled database description
file

defining a logical name for
VMS 286, 317, 319, 323

compiled database description
file, defining a logical name
for

VMS 286
compiling RDM programs 149
CONST key 32
CSI_RMS_RU_ON 140
CSV_SETUP_REALM

description of 206
using to specify data set modes

206
CSVBERROR listing 146
CSVDERROR listing 145

D

data
positioning of after an error

COBOL 143
FORTRAN and BASIC 148

updating in DBAID 95
validating 115

Data Division
coding for COBOL 153
where to code it in your

program 153
data item binding 233
data item descriptions

BASIC 107
COBOL 106
FORTRAN 107

data item lists
data items you may not refer to

360
determining efficiency of 366
parameter for 232

data item, those you may not
refer to in a data item list
360

data recovery, controlling using
COMMIT and RESET 33

data set access modes
effects of on other tasks 337
permitted uses of 336

data set navigation
for primary records 215
for related records 223

data sets
closing 214
closing using SINOF PDML

command 328
opening 214
opening using SINON PDML

command 332
specifying open modes for 206

data-area parameter, PDML 232
database

defining before executing your
RDM program 151

initializing 358
recovery, controlling 140
terminating 358

data-item binding 369
data-item-list parameter,

keywords 233
data-set parameter, PDML 232
date, size of the area length 275
DBAID

accessing 36
accessing the SUPRA HELP

facility when using 41
automatic COMMIT facility,

disabling 45
automatic RESET facility,

disabling 77
signing on to 40
using to test views 34

Index

Programming Guide 425

DBAID commands
* 42
= 42
BYE 43
BY-LEVEL 43
CAUTIOUS 45
COLUMN-DEFN 46
COLUMN-TEXT 51
COMMIT 52
DELETE 53
ERASE 56
FIELD-DEFN 56
FIELD-TEXT 59
FORGET 61
GET

examples 66
using 62
using with nonunique keys 63
using with unique keys 63

GO 68
INSERT 72

inserting a view to an RMS
data set 75

inserting nonuniquely keyed
values 72

using MASS with 73, 75
KEEP 77
LINESIZE 78
MARK 79
MARKS 80
OPEN 81
PAGESIZE 83
PRINT-STATS 84
RELEASE 85
RESET 86
SHOW-NAVIGATION 87
SIGN-OFF 88
SIGN-ON 89
STATS 90
STATS-OFF 91
STATS-ON 92
SURE 93
UNDEFINE 94
UPDATE 95
USER-LIST 98
VIEW-DEFN 99
VIEWS 101
VIEWS-FOR-USER 102

deadlock
effect on performance 352
preventing 352

deadly embrace. See deadlock
declaration statements, coding

for BASIC and FORTRAN
153

default error-handlers 141
DEFINE command

for compiled database
description 286, 317, 319,
323

DEFINE command, for compiled
database description 286

defining, program data 109
DELETE ALL, RDML statement,

using to delete relationships
136

DELETE, RDML statement
BASIC 169
COBOL 169
considerations for using 169
FORTRAN 169
using GET before performing

136
using to delete relationships

137
using to modify rows 136
using with entities that are

related 137
deleting

entities 137
primary records 218
related records 226
relationships 137

DEL-M, PDML command
caution about using with

RDNXT 277, 362
understanding how to use 218
using 276

DELVD, PDML command
using 278
using while processing related

data sets with RDNXT 293
Destination Directory, specifying

when running an RDM
program 152

device failure recovery 23
Directory, functions of 23

Index

426 P25-0240-49

disabling
DBAID automatic COMMIT

facility 45
DBAID automatic RESET

facility 77
displaying

attribute list for a user view 98
comments for column in a view

51, 59
condensed description of a

view 99
current line-size setting 78
current statistics for views 90
field names 43
number of characters in a line

78
page-size setting 83
views currently active 101

DUP KEY
using if keys you are inserting

already have values 138
using in FORTRAN and BASIC

error handlers 147
with INSERT 192

E

ELSE
with FORGET 175
with GET 180
with INSERT 192

END ERROR HANDLER
with INCLUDE 158
with INCLUDE ULT-CONTROL

165
END IF

with GET 188
with INSERT 190

END., reference parameter 363
Endp parameter, PDML 232
enrolling program in the SUPRA

Directory 108
entities

adding 139
deleting 137

environment division, writing for
COBOL 109

error handlers
default for BASIC 144
default for FORTRAN 144
using to handle unsuccessful

RDM functions 134
when SUPRA uses a default

error handler for FORTRAN
and BASIC 144

writing for FORTRAN and
BASIC 144

error handling, writing for COBOL
141

ERROR-ON, with COBOL error
handler 141

ERROR-ON-ULT-CONTROL 142
errors

handling 134
handling in logical units of work

351
impacting positioning when

using GET 134
examples. See PDM program,

examples; and RDM
program, samples

exiting DBAID 43

F

fatal embrace. See deadlock
field names, displaying in DBAID

43
files, SPECTRA central and

personal 24
FIRST, using with

GET
COBOL 177
FORTRAN and BASIC 184

INSERT 190
INSERT to control row

placement 138
FOR UPDATE, using with

GET
COBOL 178
FORTRAN and BASIC 185

FORGET, RDML statement
BASIC 173
COBOL 173
FORTRAN 173

Index

Programming Guide 427

FORTRAN
data item descriptions 107
error handlers 144
error handlers, using DUP KEY

and NOT FOUND
statements 147

listing of CSVDERROR 145
writing Declaration Statements

153
writing the program naming

statement 108
FORTRAN program logic

statements
controlling database recovery

140
handling error conditions 144
modifying rows 135, 136, 138
retrieving rows 123
signing off of RDM 122
signing on to RDM 122

FORTRAN programs
example PDM program 372
linking 151
running the RDM preprocessor

for 149
sample RDM program 391, 395

FORTRAN RDML statements
COMMIT 167
DELETE 169
FORGET 173
INCLUDE 110
INCLUDE 153
INCLUDE ULT-CONTROL 164
INSERT 190
MARK 195
RELEASE 198
RESET 200
SIGN-OFF 202
SIGN-ON 205
UPDATE 210
using hyphens and

underscores in 104
FSI. See Function Status

Indicator (FSI)
Function Status Indicator (FSI)

116

G

gathering statistics in DBAID 92
generic reads

considerations for using 129
performing 127

GET FIRST
examples 123
using 123, 124

GET LAST, using 124
GET NEXT

examples 123
using 123

GET, RDML statement
BASIC 183
COBOL 176
FORTRAN 183
using to control record holding

133

H

held status, what to do if you
receive 352

I
identification dvision, writing for

COBOL 108
INCLUDE ULT-CONTROL,

RDML statement
BASIC 164
COBOL 163
FORTRAN 164
where to include in your

COBOL program 111
INCLUDE, RDML statements

BASIC 110, 153
COBOL 110, 153
FORTRAN 110, 153

index masking 317
index Masking 317
initializing

PDM programs 351
SUPRA database 358

Index

428 P25-0240-49

INSERT, RDML statement
BASIC 190
COBOL 190
coding an UPDATE statement

after using 138
FORTRAN 190
using to modify rows 138
using with null values 139

issuing
COMMIT in DBAID 93
RDM DELETE in DBAID 53, 54
RDM INSERT in DBAID 72
RDM RELEASE in DBAID 85
RDM RESET in DBAID 86
sweeping GETS in DBAID 68

K

keys
assigning values to 32
changing to enable use of the

UPDATE statement on the
row 135

nonunique 32
retrieving rows with 123
retrieving rows without 123
secondary 127
unique 31
using wildcard characters in

127
keywords, in data-item-list

parameter 233

L

LAST, using with
INSERT to control row

placement 138
LINESIZE setting, displaying in

DBAID 78
linking your application program

348
linking your RDM program 151
linkpath parameter, PDML 232
listing all open MARKs in DBAID

80
LKxx reference parameter 363
LOCK, to hold records 272

logical names
compiled database description

file (VMS) 286, 317, 319,
323

logical statistics, printing in
DBAID 84

logical unit of work
definition of 350
handling errors in 353
implemeting 351
preventing deadlocks between

352
reserving resources for 350

loops, preventing in COBOL error
handlers 143

M

MANTIS 24
MARK statement

BASIC 195
COBOL 195
considerations for using 195
FORTRAN 195
using to save position of a row

for later access 132
marking the current position of a

view in DBAID 79
MARKL, using 283
MARKS

listing 80
removing in DBAID 61

MASK option for index searches
317

metadata, definition 23
mode. See data set access

modes

N

NEXT, using with
INSERT to control row

placement 138
node name parameter 232
NOT FOUND

including in your program 125
using with an unsuccessful

RDM function 134
using with COBOL error-

handlers 142
null values, inserting 139

Index

Programming Guide 429

O

ON ERROR, in FORTRAN and
BASIC error handlers 144

OPCOM, PDML command 285
opening views in DBAID 81
option parameter, PDML 232

P

page-size setting, displaying in
DBAID 83

parameters, PDML. See PDML
parameters

PDM (Physical Data Manager)
function of 23
supported recovery techniques

23
PDM program

checking the status parameter
362

examples
C 374
COBOL 371
FORTRAN 372
PL/I 373

improving program efficiency
366

initialization and termination
requirements 358

initialization of 351
linking 348
managing 354
requirements for terminating

358
testing 368

PDML (Physical Data
Manipulation Language)

command categories 229
command parameters 232
commands, brief description

229
definition of 213
general format 227

understanding how to use
adding a primary record 215
adding a related record 219
deleting a primary record 218
deleting a related record 226
opening/closing data sets 214
reading a primary record 215
reading a related record 215
updating a primary record

218
updating a related record 225

PDML commands
ADD-M 238
ADDVA 242
ADDVB 249
ADDVC 256
ADDVR 263
CNTRL 269
COMIT 273
DEL-M 276
DELVD 278
MARKL 283
OPCOM 285
RDNXT 289
READD 294
READM 300
READR 303
READV 309
READX 314
RESET 324
RQLOC 326
SINOF 328
SINON 332
WRITM 338
WRITV 342

PDML parameters, by PDML
command 232

performance, effect of record
holding on 132

Physical Data Manager. See
PDM and PDM program

Physical Data Manipulation
Language. See PDML

physical key
adding with ADD-M 239, 361
changing 338
deleting with DEL-M 276

physical statistics, printing in
DBAID 84

Index

430 P25-0240-49

PL/I program, example PDM
program 373

position of a view, DBAID 79
ppppLKxx 360
preprocessor. See RDM

preprocessor
primary data set processing 360
primary record

adding in PDM programs 215
adding using ADD-M 238
deleting in PDM programs 218
deleting using DEL-M 276
reading in PDM programs 215
updating in PDM programs 218

printing current statistics in
DBAID 91

printing logical statistics in
DBAID 84

printing physical statistics in
DBAID 84

PRIOR, using with
INSERT to control row

placement 138
procedure division, writing for

COBOL and FORTRAN 122
program data, defining 109
program logic statements, writing

for BASIC and FORTRAN
167

program naming statement
FORTRAN 108

program naming statement,
writing for BASIC and
FORTRAN 108

program, enrolling in the SUPRA
Directory 108. See also
PDM program or RDM
program

Q

qualifier parameter, PDML 232

R

RDM (Relational Data Manager)
how it uses your program to

manipulate data 26
proprocessor, functions of 22
retrieval and maintenance

operations 22
understanding how it works 26
using RDML to access data 26

RDM access paths, verifying the
accuracy of using DBAID 87

RDM preprocessor
function of 26
how it comments out

statements 110
running 149

RDM program
compiling 149
how RDM checks for currency

121
implementing and executing

149
linking 151
samples

BASIC 407, 409
COBOL 375, 378
FORTRAN 391, 395

testing using DBAID 35
RDM statements

SIGN–OFF 30
SIGN–ON 30

RDML (Relational Data
Manipulation Language)

understanding 30
understanding how to retrieve

rows using keys 31
understanding required

columns 32
understanding sequential

retrieval using GET 31
unique and nonunique key

values 31
using compound nonuniques

keys to retrieve data 32
using nonunique keys to

retrieve data 32
using unique keys to retrieve

data 31

Index

Programming Guide 431

RDML (Relational Data
Manipulation Lanuguage)

special function statements
(MARK, FORGET,
RELEASE) 33

RDML statement format
BASIC 104
COBOL 103
FORTRAN 104

RDML statements
COMMIT

BASIC 167
COBOL 167
FORTRAN 167

DELETE
BASIC 169
COBOL 169
FORTRAN 169

FORGET
BASIC 173
COBOL 173
FORTRAN 173

GET
BASIC 183
COBOL 176
FORTRAN 183

INCLUDE
BASIC 153
COBOL 153
FORTRAN 153

INCLUDE ULT-CONTROL
BASIC 164
COBOL 163
FORTRAN 164

INSERT
BASIC 190
COBOL 190
FORTRAN 190

MARK
BASIC 195
COBOL 195
FORTRAN 195

RELEASE
BASIC 198
COBOL 198
FORTRAN 198

RESET
BASIC 200
COBOL 200
FORTRAN 200

SIGN-OFF
BASIC 202

COBOL 202
FORTRAN) 202

SIGN-ON
BASIC 205
COBOL 205
FORTRAN 205

UPDATE
BASIC 210
COBOL 210
FORTRAN 210

RDNXT
caution about using with DEL-M

277
using 289
using to read a primary record

215
using to read a related file 224
when to use 367

READ, to hold records 272
READD

issuing after a DELVD 282
using 294

reading primary records 215
reading related records 223
READM

understanding how to use for
primary records 215

using 300
using when deleting primary

records 218
using when updating primary

records 218
READR

issuing after a DELVD 282
using 303

READV
issuing after a DELVD 282
using 309

READX
using 314
using to read primary records

216
using to read related records

224
REALM

with SINOF 329
with SINON 333

REBD
using when reading a primary

record 216
recompiling, when necessary 121

Index

432 P25-0240-49

record code, changing using
ADDVR 263

record holding
effect on performance 132
how to use GET statement to

control it 133
recovery

controlling 140
from device 23
shadow recording 23
system logging 23
task level 23

reference parameter
END. 363
LKxx 363
RRN 363

reference parameter values
before and after issuing a

command 364
significant changes in after

issuing commands 365
reference parameter, PDML 232
reissuing DBAID commands 42
related data set

processing 362
using code directed reading

with 370
related record

adding in PDM programs 219
adding using ADDVA 219, 222
adding using ADDVB 219, 221
adding using ADDVC 219
consideration for successful

processing 362
deleting in PDM program 226
deleting using DELVD 278
reading in PDM programs 223
updating in PDM programs 225

related record number. See RRN
Relational Data Manager. See

RDM
relationships

adding with entities in one
operation 139

deleting 137
RELEASE statement

BASIC 198
COBOL 198
considerations for using 198
FORTRAN 198

removing MARKS in DBAID 61

RESET
PDML command

issuing after a COMIT 275
using to handle errors in a

logical unit of work 353
RDML statement

using to control database
recovery 140

RESET statement
BASIC 200
COBOL 200
considerations for using 200
FORTRAN 200

RESET, PDML command
using 324

retrieving rows. See rows,
retrieving

RMS files, recovering 140
RMS Recovery Unit Journalling

140
rolling back database updates 86
rows

controlling the placement of
when using INSERT 138

inserting, in DBAID 72
modifying 134

using COMMIT when
modifying 134

using DELETE 136
using INSERT 138
using UPDATE 135

retrieving
in DBAID using GET 62
in DBAID using GO 68
using COMMIT when

modifying 134
using partial keys 127
using wildcard characters 127
with keys 123
without a key 123

RQLOC PDML command 326
RRN

reference parameter 363
repositioning of after using

DELVD 278
sources when supplied to

READD 299

Index

Programming Guide 433

S

serial retrieval
caution about when adding and

deleting 362
performing using RDNXT 289

Serial retrieval
description of 215

shadow recording 23
shared holds 272
signing off of DBAID 88
signing on to DBAID 89
SIGN-OFF RDML statement

DBAID 88
SIGN-OFF statement

BASIC 202
COBOL 202
considerations for using 202
FORTRAN 202

SIGN-ON RDML statement
DBAID 89

SIGN-ON statement
BASIC 205
COBOL 205
considerations for using 205
FORTRAN 205

SINOF PDML command 328
SINON access modes

effects of on tasks 337
permitted uses 336

SINON PDML command 332
specifying the number of lines on

a screen/page in DBAID) 83
SPECTRA 24
statements

PDML. See PDML commands
RDML. See RDML statements

statistics
displaying for views in DBAID

90
gathering in DBAID 92
printing in DBAID 91

status indicatiors for RDML
commands 116

status parameter, PDML,
checking 359

statuses, PDM
received at SINOF 331
received at SINON 335

SUPRA Server
communicating with using

CALL statements 354
default error handler 142
Directory 23
exit handler 358
HELP facility 41
tools for programmers

UNIX 21
VMS 20, 23

SUPRA Server databases
initialization and termination

requirements for 358
SUPRAD 26

sweeping GETS, issuing in
DBAID 68

system log file, writing records to
using MARKL 283

system logging 23

T

task access modes, compared
with data set access modes
336, 337

task level recovery 23
task log file 324
task management 358
testing

PDML programs 368
RDML programs using DBAID

35
testing views 34
TLR. See task level recovery

U

ULT-CONTROL, coding with an
INCLUDE statement

BASIC 112
COBOL 111
FORTRAN 112

unsuccessful RDM functions,
handling 134

Index

434 P25-0240-49

UPDATE RDML statement
considerations for using on a

view key 135
using after an INSERT

statement to update
columns 139

using to modify rows 135
using with null values 139

UPDATE statement
BASIC 210
COBOL 210
considerations for using 210
FORTRAN 210

updating
data values in DBAID 95
primary records 218
related records 225

user view 28
USING clause 123

V

validating data 115
Validity Status Indicators 120
VAX compiler, running to execute

an RDM program 150
verifying RDM access paths in

DBAID 87
view

creating a view for your
program 110

definition 27
ULT-CONTROL 111, 112, 113
using an established view for

your program 110
using subsets of 28

view descriptors 100
view keys

how to code your INSERT
when a view is uniquely
keyed 138

using the UPDATE statement
on 135

view-name
with BY-LEVEL (DBAID) 43
with COLUMN-DEFN (DBAID)

46
with COLUMN-TEXT (DBAID)

51

with DELETE
BASIC 169
COBOL 169
FORTRAN 169

with DELETE (DBAID) 53
with FIELD-DEFN (DBAID) 56
with FIELD-TEXT (DBAID) 59
with GET

BASIC 185
COBOL 178
DBAID 64
FORTRAN 185

with GO (DBAID) 68
with INCLUDE

BASIC 158
COBOL 154, 158
FORTRAN 158

with INSERT
BASIC 191
COBOL 191
DBAID 73
FORTRAN 191

with MARK
BASIC 195
COBOL 195
DBAID 79
FORTRAN 195

with OPEN
DBAID 81

with RELEASE
BASIC 198
COBOL 198
DBAID 85
FORTRAN 198

with SHOW-NAVIGATION
DBAID 87

with STATS
DBAID 90

with UNDEFINE
DBAID 94

with UPDATE
BASIC 210
COBOL 210
DBAID 95
FORTRAN 210

with VIEW-DEFN
DBAID 99

views
displaying 101

Index

Programming Guide 435

virtual view, removing the name
and definition of 94

VMS RMS Recovery Unit
Journalling 140

VSI. See Validity Status
Indicators

W

wildcard character
retrieving rows with 127
using * 127
using = 127

writing program naming
statement

BASIC 108
FORTRAN 108

writing the environment division
COBOL 109

WRITM
using 338
using while processing primary

data sets with RDNXT 293
what you should do before

using 218
WRITV

using 342
using processing related data

sets with RDNXT 293

Index

436 P25-0240-49

	Back to UNIX DOCUMENTATION MENU
	Back to VMS DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Understanding SUPRA Server from a programming viewpoint
	Overview
	The Relational Data Manager (RDM) (VMS)
	The Directory
	The Physical Data Manager (PDM)
	MANTIS
	SPECTRA (VMS/VAX)

	Chapter 2 - Understanding the Relational Data Manager and Relational Data Manipulation Language (VMS)
	Understanding views
	Understanding how your DBA creates and maintains views
	Defining views
	Changing view design
	Changing database structure

	Understanding Relational Data Manipulation Language
	Signing on/off
	Manipulating data
	Retrieving rows sequentially using the GET statement
	Retrieving rows using keys defined by your DBA
	Unique keys
	Nonunique keys
	Assigning values to unique and nonunique keys
	Required columns

	Controlling data recovery
	Using special function RDML statements

	Testing views using the DBAID Utility subset

	Chapter 3 - Using the DBAID Utility subset to test views (VMS)
	Accessing DBAID
	Signing on to DBAID
	Accessing the SUPRA Server HELP facility

	* command
	= command
	BYE command
	BY-LEVEL command
	CAUTIOUS command
	COLUMN-DEFN command
	COLUMN-TEXT command
	COMMIT command
	DELETE command
	ERASE command
	FIELD-DEFN command
	FIELD-TEXT command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	LINESIZE command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	PRINT-STATS command
	RELEASE command
	RESET command
	SHOW-NAVIGATION command
	SIGN-OFF command
	SIGN-ON command
	STATS command
	STATS-OFF command
	STATS-ON command
	SURE command
	UNDEFINE command
	UPDATE command
	USER-LIST command
	VIEW-DEFN command
	VIEWS command
	VIEWS-FOR-USER command

	Chapter 4 - Writing an RDM program in COBOL, FORTRAN, and BASIC (VMS)
	Understanding RDML statement format
	Enrolling your program in the SUPRA directory
	Writing the identification division (COBOL)
	Writing the program naming statement (FORTRAN and BASIC)

	Defining program data
	Writing the environment division (COBOL)
	Writing the Data Division (COBOL) and the Declaration Statements (FORTRAN and BASIC)
	Specifying views and user views
	Specifying ULT-CONTROL
	Validating data

	Checking for current program

	Defining program logic
	Signing on/off
	Retrieving rows
	Retrieving rows without a key
	Retrieving rows with keys
	Retrieving rows using partial keys
	Retrieving multiple views
	Using MARK to save position of a row for later access
	Using GET to control record holding
	Handling an unsuccessful RDM function

	Modifying rows
	Using UPDATE
	Using DELETE
	Using INSERT

	Controlling database recovery
	Handling error conditions
	Understanding COBOL error handlers
	Understanding FORTRAN and BASIC error handlers

	Implementing and executing an RDM program

	Chapter 5 - Coding RDM program statements (VMS)
	Coding program data statements
	INCLUDE view˚data
	INCLUDE ULT-CONTROL

	Coding program logic statements
	COMMIT
	DELETE
	FORGET
	GET
	INSERT
	MARK
	RELEASE
	RESET
	SIGN-OFF
	SIGN-ON
	UPDATE

	Chapter 6 - Understanding Physical Data Manipulation Language (PDML)
	Opening/closing data sets
	Adding a primary record
	Reading a primary record
	Updating a primary record
	Deleting a primary record
	Adding a related record
	Reading a related record
	Updating a related record
	Deleting a related record

	Chapter 7 - Using PDML
	Table of PDML commands
	Data list parameter keywords
	PDML commands
	ADD˚M
	ADDVA
	ADDVB
	ADDVC
	ADDVR
	CNTRL (VMS only)
	COMIT
	DEL˚M
	DELVD
	MARKL
	OPCOM
	RDNXT
	READD
	READM
	READR
	READV
	READX
	RESET
	RQLOC
	SINOF
	SINON
	WRITM
	WRITV

	Chapter 8 - Optimizing your PDML program
	Linking your application program
	Using logical units of work
	Reserving resources
	Implementing a logical unit of work
	Understanding deadlocks and how to prevent them
	Handling errors in a logical unit of work

	Managing your application program
	Communicating with SUPRA Server
	Parameter list definitions
	Initialization and termination requirements
	Task management
	Checking the status parameter

	Using standard primary data-set processing
	Data items you must not refer to
	The ADD˚M command
	Structural maintenance during serial processing

	Using standard related-data-set processing
	The reference parameter
	Improving program efficiency

	Understanding RDNXT serial processing
	Testing database programs
	Using extended data item processing
	Data-item binding
	Code-directed reading

	PDML examples

	Appendix A - Sample RDM programs (VMS)
	Sample COBOL RDM program
	Sample FORTRAN RDM program
	Sample BASIC RDM program

	Index

